(3.238.235.155) 您好!臺灣時間:2021/05/16 17:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:高可罡
研究生(外文):Ke-Gang Gao
論文名稱:纖維分解酵素特性及其應用之研究
論文名稱(外文):Characterization and Application of Cellulose hydrolytic enzymes
指導教授:陳文章陳文章引用關係
指導教授(外文):Wen-Chang Chen
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:化學工程與材料工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:94
中文關鍵詞:纖維素水解酶四氧化三鐵固定化糖化
外文關鍵詞:CellulaseCMCImmobilizationSaccharification
相關次數:
  • 被引用被引用:2
  • 點閱點閱:559
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗將探討商業化的纖維素水解酶 (EC 3.2.1.4, from Trichoderma viride) 與木黴菌生產之粗萃纖維素水解酶之生化特性、酵素動力學參數、以及四氧化三鐵 (Fe3O4) 固定化酵素之最適化反應特性。結果得知:游離纖維素水解酶與粗酵素之最適 pH 值皆為 pH 4.8,最適溫度為 50℃;pH 穩定性分別為 pH 4.5~pH 6.5 之間穩定性為 80% 左右,及 pH 3.5~pH 7 之間穩定性為 80% 左右。而溫度穩定性則分別為 20~40 ℃ 及20~50 ℃ 穩定性為 70% 與 40 % 以上。固定化之纖維素水解酶與粗酵素對酸鹼及溫度的穩定度也隨之提升,使得酵素可以在較高溫下及較中性環境下進行操作,並且於連續 15 次批次操作,還擁有約 30 % 的固定化殘餘效率。在糖化實驗部分,當基質為 2 % 稻稈粉時,糖化時間達到 48 小時,纖維素水解酶會產出約 40 mM 的還原糖與 3.5 mM 葡萄糖,粗酵素則會產出約 30 mM 的還原糖與 4 mM 葡萄糖。
Immobilization of cellulase and crude enzymes onto Fe3O4 has been studied. The biocatalytic efficiency of immobilized cellulase and crude enzymes were examined for carboxymethyl cellulose (CMC) hydrolysis for determining the enzymatic properties. Results showed that the optimal pH and temperature for activity of free cellulase and crude enzymes were 4.8 and 50 °C, respectively, and free cellulase and crude enzymes were very stable in the pH range of 4.5 to 6.5; 3.5 to 7.0 and temperature of 20-40℃; 20-50℃. When we immobilize free cellulase and crude enzyme, the enzyme is stable under acid and base condition. So it can be operated at higher temperature and neutral environment. Comparing the residue effective of enzyme immobilized on Fe3O4, the enzyme immobilized on Fe3O4 remain 30% residue effective after 15 times batch process continuously. Saccharification experiment use cellulase and crude enzyme. 2% subtract reacted with cellulase can carry out 40 mM reducing sugar and 3.5 mM glucose after reaction for 48 hours, and crude enzyme can carry out 30 mM reducing sugar and 4 mM glucose under the same reaction time.
目 錄
中文摘要----------------------------------------------------------------------- i
英文摘要---------------------------------------------------------------------- ii
誌謝 --------------------------------------------------------------------------- iii
目錄 --------------------------------------------------------------------------- iv
表目錄 ------------------------------------------------------------------------ vii
圖目錄 ------------------------------------------------------------------------ viii
第一章 緒論 ------------------------------------------------------------ 1
1.1 研究動機與目的 -------------------------------------------- 1
第二章 文獻回顧 ----------------------------------------------------- 3
2.1 纖維素物質的介紹 ---------------------------------------- 3
2.2 纖維素的介紹 ---------------------------------------------- 3
2.3 纖維素的分佈與來原 ------------------------------------- 5
2.4 纖維素的應用 ---------------------------------------------- 5
2.5 纖維素水解酶 ---------------------------------------------- 6
2.6 內切型纖維素水解酶 ------------------------------------- 7
2.7 外切型纖維素水解酶 ------------------------------------- 8
2.8 β-葡萄糖酣酶 --------------------------------------------- 8
2.9 纖維素水解酶的協同作用機制 ------------------------- 9
2.10 纖維素水解酶的應用 ------------------------------------- 9
2.11 磁性奈米材料的簡介與特性 ---------------------------- 11
2.12 磁性奈米材料的製備與應用 ---------------------------- 11
2.13 酵素固定化的技術與優點 ------------------------------- 12
2.14 酵素固定化的分類 ---------------------------------------- 14
2.15 纖維素水解酶固定化的發展 ---------------------------- 15
2.16 纖維素水解酶的動力方程式 ---------------------------- 16
第三章 材料與方法 ------------------------------------------ 20
3.1 纖維素水解酶 ---------------------------------------------- 20
3.2 實驗藥品 ---------------------------------------------------- 20
3.3 實驗儀器 ---------------------------------------------------- 20
3.4 纖維素水解酶活性分析方 ------------------------------- 21
3.5 蛋白質定量法 ---------------------------------------------- 23
3.6 四氧化三鐵的製備 (Fe3O4)------------------------------- 23
3.7 固定化纖維素水解酶之最適化 ------------------------- 24
3.8 纖維素水解酶最適反應 pH 值之測定 --------------- 24
3.9 纖維素水解酶最適反應溫度之測定 ------------------- 25
3.10 纖維素水解酶 pH 值穩定性之測定 ------------------ 25
3.11 纖維素水解酶熱穩定性之測定 ------------------------- 26
3.12 纖維素水解酶動力學實驗 ------------------------------- 26
3.13 固定化纖維水解酶活性重複測定 ---------------------- 27
3.14 糖化實驗 (CMC、稻稈粉) ------------------------------- 27
3.15 固定化纖維素水解酶糖化重複使用性 ---------------- 28
第四章 結果與討論------------------------------------------- 29
4.1 固定化蛋白質偶合效率 ----------------------------------- 29
4.2 固定化纖維素水解酶之最適化覆載量 ----------------- 29
4.3 固定化前後之最適反應 pH 值及穩定性之探討------ 33
4.4 固定化前後之最適反應溫度及穩定性之探討 -------- 41
4.5 纖維素水解酶動力學實驗 -------------------------------- 51
4.6 固定化纖維水解酶之重複活性測定 -------------------- 57
4.7 游離纖維素水解酶之糖化 -------------------------------- 59
4.8 固定化纖維素水解酶糖化之重複使用性 -------------- 64
第五章 結論---------------------------------------------------- 69
參考文獻---------------------------------------------------------------------- 72

表 目 錄
表1 纖維素水解酶分類----------------------------------------------------- 7
表2 纖維素水解酶動力學模式之比較------------------------------------ 19
表3 不同酵素量於固定化實驗之影響 (cellulase;Fe3O4)----------- 32
表4 不同酵素量於固定化實驗之影響 (粗酵素;Fe3O4)------------- 32
表5 不同菌種之 cellulase 最適化反應 pH 與溫度------------------ 47
表6 游離與固定化之 cellulase 及粗酵素動力學參數--------------- 56

圖 目 錄
圖 1 纖維素的單體---------------------------------------------------------- 4
圖 2 纖維素的長鏈狀型態------------------------------------------------- 4
圖 3 纖維素的網狀結構---------------------------------------------------- 5
圖 4 纖維素水解酶的協同作用機制------------------------------------- 10
圖 5 DNS 試劑與還原醣作用原理--------------------------------------- 22
圖 6 不同濃度之蛋白質 (cellulase) 與固定化偶合效率 (%) 的影響,
固定化載體 (Fe3O4)-------------------------------------------------- 30
圖7 不同濃度之蛋白質 (粗酵素) 與固定化偶合效率 (%) 的影響,
固定化載體 (Fe3O4)------------------------------------------------ 31
圖 8 cellulase 於固定化前、後之最適化反應 pH 值,1.5 % (w/v) CMC、
反應溫度 50 ℃-------------------------------------------------------- 36
圖 9 粗酵素於固定化前、後之最適化反應 pH 值,1.5 % (w/v) CMC、
反應溫度 50 ℃-------------------------------------------------------- 37
圖 10 游離 cellulase 之 pH 穩定性,1.5 % (w/v) CMC、反應溫度
50 ℃、保存時間 1~24 hr ---------------------------------------- 39
圖 11 以 Fe3O4 奈米粒子固定化cellulase 之 pH 穩定性,
1.5 % (w/v) CMC、反應溫度 50 ℃、保存時間 1~24 hr ---- 40
圖 12 游離粗酵素之 pH 穩定性,1.5 % (w/v) CMC、反應溫度
50 ℃、保存時間 1~24 hr ---------------------------------------- 42
圖 13 以 Fe3O4 奈米粒子固定化粗酵素之 pH 穩定性,
1.5 % (w/v) CMC、反應溫度 50 ℃、保存時間 1~24 hr ---- 43
圖 14 cellulase 於固定化前、後之最適化反應溫度,1.5 % (w/v) CMC、
pH 4.8----------------------------------------------------------------- 45
圖 15 粗酵素於固定化前、後之最適化反應溫度,1.5 % (w/v) CMC、
pH 4.8----------------------------------------------------------------- 46
圖 16 游離 cellulase 之溫度穩定性,1.5 % (w/v) CMC、pH 4.8、
保存時間 10~120 min -------------------------------------------- 49
圖 17 以 Fe3O4 奈米粒子固定化 cellulase 之溫度穩定性,
1.5 % (w/v) CMC、pH 4.8、保存時間 10~120 min -------- 50
圖 18 游離粗酵素之溫度穩定性,1.5 % (w/v) CMC、pH 4.8、
保存時間 10~120 min ---------------------------------------------- 52
圖 19 以 Fe3O4 奈米粒子固定化粗酵素之溫度穩定性,
1.5 % (w/v) CMC、pH 4.0、保存時間 10~120 min -------- 53
圖 20 cellulase 水解 CMC 初速率與基質濃度之關係圖
100 mM 醋酸緩衝溶液,反應溫度 50℃---------------------- 54
圖 21 粗酵素水解 CMC 初速率與基質濃度之關係圖
100 mM 醋酸緩衝溶液,反應溫度 50℃---------------------- 55
圖 22 固定化之 cellulase 及粗酵素的重複使用性------------------ 58
圖 23 游離 cellulase 之1.5 % CMC 水解 (還原糖)
反應溫度 50 ℃,pH 4.8,100 mM 醋酸緩衝溶液,
反應時間 48 hr,轉速 200 rpm ------------------------------- 60
圖 24 游離 cellulase 之1.5 % CMC 水解 (葡萄糖)
反應溫度 50 ℃,pH 4.8,100 mM 醋酸緩衝溶液,
反應時間 48 hr,轉速 200 rpm ------------------------------- 61
圖 25 游離 cellulase 與粗酵素之2 % 稻稈粉水解 (還原糖)
反應溫度 50 ℃,pH 4.8,100 mM 醋酸緩衝溶液,
反應時間 48 hr,轉速 200 rpm ------------------------------- 62
圖 26 游離 cellulase 與粗酵素之2 % 稻稈粉水解 (葡萄糖)
反應溫度 50 ℃,pH 4.8,100 mM 醋酸緩衝溶液,
反應時間 48 hr,轉速 200 rpm ------------------------------- 63
圖 27 固定化 cellulase 之1.5 % CMC 水解 (還原糖)
反應溫度 50 ℃,pH 4.8,100 mM 醋酸緩衝溶液,
反應時間 48 hr,轉速 200 rpm --------------------------------- 65
圖 28 固定化 cellulase 之1.5 % CMC 水解 (葡萄糖)
反應溫度 50 ℃,pH 4.8,100 mM 醋酸緩衝溶液,
反應時間 48 hr,轉速 200 rpm ------------------------------- 66
圖 29 固定化 cellulase 之2 % 稻稈粉水解 (還原糖)
反應溫度 50 ℃,pH 4.8,100 mM 醋酸緩衝溶液,
反應時間 96 hr,轉速 200 rpm ------------------------------- 67
圖 30 固定化 cellulose 之 2 % 稻稈粉水解 (葡萄糖)
反應溫度 50 ℃,pH 4.8,100 mM 醋酸緩衝溶液,
反應時間 96 hr,轉速 200 rpm ------------------------------ 68
1. 田蔚城 (1996) 生物技術,眾光出版社
2. 江善宗、殷儷容 (2006) 纖維素水解酵素於綠藻工業之應用研
究,農業生技產業季刊 7:26-36
3. 吳茜茜、吳克、劉斌、楊本宏、趙麗君、蔡敬民、潘人瑞(2003)
殼聚糖固定化德氏根霉脂肪酶的研究,工業微生物,33(4): 9-13
4. 莊榮輝、吳建興、陳翰民、張世宗、林世民、劉育志 (2005) 酵
素化學實驗,國立台灣大學微生物與生物所,生物化學實驗室
5. 陳人豪 (2006) 磁性奈米粒子製備及其於電磁波遮蔽之應用,國
立中央大學化學工程與材料工程所,碩士論文,42-43
6. 陳國誠(1999)微生物酵素工程學,再版,藝軒圖書出版社,台
北縣
7. 黃世宏 (2003) 氧化鐵磁性奈米粒子在酵素固定化及分離上之應
用研究,國立成功大學化學工程學系,碩士論文,1-10
8. 楊謝樂 (2006) 磁性奈米粒子於生物醫學上之應用,物理雙月刊
28: 692-697
9. 廖敏宏 (2002) 磁性奈米載體在生物觸媒和生化分離之應用,國
立成功大學化學工程系,碩士論文,125-126
10. 劉秀花、劉茵、梁峰(2006)一株產脂肪酶芽孢桿菌的發酵條件
及酶學性質,湖北農業科學,45(4): 509-511
11. 劉英俊、汪金追編著 (1987) 酵素工程,台北,中央圖書出版,
272-273
12. Ai Z, Jiang Z, Li L, Deng W, Kusakabe I and Li H (2005)
Immobilization of Streptomyces olivaceoviridis E-86 xylanase on
eudragit s-100 for xylo-oligosaccharide production. Process
Biochemistry 40:2707–2714
13. Ajoy CC and Kenneth BS (1988) Immobilization of cellulase using
polyurethane foam. Applied Biochemistry and Biotechnology 19:
189-207
14. Albert G, Sangha O and Cady RE (1989) Cellulase immobilization
on Fe3O4 and characterization. Biotechnology and Bioengineering 33:
321-326
15. Arja MO, Marja P, Raija L and Pirkko S (2005) Enhanced
production of cellobiohydrolases in Trichoderma reesei and
evaluation of the new preparations in biofinishing of cotton. Journal
of Biotechnology 116: 305–317
16. Ayse D and Azmi T (2007) Improving the stability of cellulase by
immobilization on defied polyvinyl alcohol coated chitosan beads.
Journal of Molecular Catalysis B Enzymatic 45: 10–14
17. Bernd N, Walter S, Marianne H and Marc C (1994) Cellulose
hydrolysis by the cellulases from Trichoderma reesei: a new model
for synergistic interaction. Biochemical Journal 298: 705-710
18. Bhat MK and Bhat S (1997) Cellulose degrading enzymes and their
potential industrial applications. Biotechnology Advances 15: 583-20
19. Bhat MK (2000) Cellulases and related enzymes in biotechnology.
Biotechnology Advances 18, 355–383
20. Busto MD, Ortegan N and Perez MM (1998) Characterization of
microbial endo-β-glucanase immobilized in alginate beads. Acta
Biotechnologica 3: 189-200
21. Chakamas W, Yutaka K, Yumi M, Teruo O and Takashi S (1985)
Cellulase immobilized on a soluble polymer. Applied Microbiology
and Biotechnology 21: 37-41
22. Chen PJ, Wei TC, Chang YT and Lin LP (2004) Purification and
characterization of carboxymethyl cellulose from Sinorhizobium
fredii. Bulletin of the Polish Academy of Sciences Chemistry 45:111-118
23. Chetkarov M, Hatour FD and Kolev DN (1985) Kinetics and
mechanism of the hydrolysis of sodium carboxymethylcellulose
(Na-CMC) by a cellulase complex. Monatshefte fiir Chemic 11:1433-1445
24. Chetkarov M, Karagyozov L, Nikolov T and Kolev D (1986)
Kinetics of enzymatic hydrolysis of sodium carboxymethylcellulose
with different degrees of polymerization by cellulase. Monatshefte
fiir Chemic 117: 1021-102
25. Fan LT and Lee YH (1983) Kinetic studies of enzymatic hydrolysis
of insoluble cellulose: derivation of a mechanistic kinetic model.
Biotechnology and Bioengineering 25: 2707-2733
26. Feng T, Du Y, Yang J, Li J and Shi X (2005) Immobilization of a
nonspecific chitosan hydrolytic enzyme for application in preparation
of water-soluble low-molecular-weight chitosan. Journal of Applied
Polymer Science 101: 1334–1339
27. Gan Q, Allen SJ and Taylor G (2003) Kinetic dynamics in
heterogeneous enzymatic hydrolysis of cellulose: an overview, an
experimental study and mathematical modeling. Process
Biochemistry 38: 1003-1018
28. Gawande PV and Kamatv MY (1998) Preparation, characterization
and application of Aspergillus sp. xylanase immobilized on Eudragit
S-100. Journal of Biotechnology 66: 165–175
29. Ghose AP and Das K (1971) A simplified kinetic approach to
cellulose-cellulase system. Advances in Biochemical Engineering, 1:
55-76
30. Gkhan C, Burhan A, Nisa N and Hatice G (2002) Some properties
of crude carboxymethyl cellulase of Aspergillus niger Z10 wild-type
strain. Turkish Journal of Biology 26: 209-213
31. Han WS and Koo YM (1998) Trichoderma reesei Rut C-30. korean
institute of chemical engineers 36: 759-763
32. Henning J, Torny E, Johan B, Folke T and Lisbeth O (2003)
Purification and characterization of five cellulases and one xylanase
from Penicillium brasilianum IBT 20888. Enzyme and Microbial
Technology 32: 851–861
33. Hong RY, Feng B, Chen LL, Liu GH, Li HZ, Zheng Y and Wei
DG (2008) Synthesis, characterization and MRI application of
dextran-coated Fe3O4 magnetic nanoparticles. Biochemical
Engineering Journal 42: 290–300
34. Howell JA and Stuck JD (1975) Kinetics of solka floc cellulose
hydrolysis by Trichoderma viride cellulase. Biotechnology and
Bioengineering 17: 873-893
35. Howell JA (1978) Enzyme deactivation during cellulose hydrolysis.
Biotechnology and Bioengineering 20: 847-863
36. Huang A (1975) Kinetic studies on insoluble cellulose-cellulase
system. Biotechnology and Bioengineering 17: 1421-1433
37. Huang SH, Liao MH and Chen DH (2003) Direct Binding and
characterization of lipase onto magnetic nanoparticles. Biotechnology
Progress 19: 1095-1100
38. Isao K, Shigeru T, Takashi S and Shuichi S (1977) Hydrolysis of
cellulose in a cellulase-bead fluidized bed reactor. Biotechnology and
Bioengineering 14: 1183-1191
39. Jang HD and Chen KS (2003) Production and characterization of
thermostable cellulases from Streptomyces transformant T3-1. World
Journal of Microbiology & Biotechnology 19: 263–268
40. Jarbas FG (1992) Purification and partial characterization of two
isozymes of cellulase from GA-treated coffee endosperm. Revista
Brasileira de Fisiologia Vegetal 4: 75-80
41. Johnston DB, Shoemaker SP, smith GM and Whitaker JR (1998)
Kinetic measurements of cellulase activity on insoluble substrates
using disodium 2,2 bicinchoninate. Journal of Food Biochemistry 22:301-319
42. Kang YS, Risbud S, Rabolt JF and Stroeve P (1996) Synthesis and
characterization of nanometer-size Fe3O4 and γ-Fe2O3 particles.ChemMater 8: 2209-2211
43. Koneracka M, Kopcansky P, Antalm M, Timko M, Ramchand CN, Lobo D, Mehta RV and Upadhyay RV (1999) Immobilization of proteins and enzymes to fine magnetic particles. Journal of Magnetism and Magnetic Materials 201: 427-430
44. Koneracka M, Kopcansky P, Timko M, Ramchand CN, Saiyed ZM, Trevan M and Sequeira AD (2000) Immobilization of enzymes on magnetic particles. Methods in Biotechnology
Immobilization of Enzymes and Cells 2: 217-228
45. Lee SJ, Kim SR, Yoon HJ, Kim I, Lee KS, Je YH, Lee SM, Seo
SJ, Sohna HD and Jin BR (2004) cDNA cloning, expression, and
enzymatic activity of a cellulose from the mulberry longicorn beetle,
Apriona germari. Comparative Biochemistry and Physiology, Part B
139: 107– 116
46. Lee YJ, Kim BK, Lee BH, Jo KI, Lee NK, Chung CH, Lee YC
and Lee JW (2008) Purification and characterization of cellulase
produced by Bacillus amyoliquefaciens DL-3 utilizing rice hull.
Bioresource Technology 99: 378-386
47. Li C, Yoshimoto M, Fukunaga K, Nakao K (2007)
Characterization and immobilization of liposome-bound cellulase for
hydrolysis of insoluble cellulose. Bioresource Technology 98:1366–1372
48. Li L, Zhu Y, Huang Z, Jiang Z and Chen W (2007)
Immobilization of the recombinant xylanase B (XynB) from the
hyperthermophilic Thermotoga maritima on metal-chelate Eupergit C
250L. Enzyme and Microbial Technology 41: 278–285
49. Liaw E and Penner MH (1990) Substrate-velocity relationships for
the trichoderma viride cellulase-catalyzed hydrolysis of cellulose.
Applied and environmental microbiology 56: 2311-2318
50. Liu X, Guan Y, Shen R, Liu H (2005) Immobilization of lipase
onto micron-size magnetic beads. Journal of Chromatography B 822:91–97
51. Lungisa M, Brendan S. W and Brett I. P (2006) Cellulases
(CMCases) and polyphenol oxidases from thermophilic Bacillus spp.
isolated from compost. Soil Biology and Biochemistry 38: 2963-2966
52. Mao X, Guo G, Huang J, Du Z, Huang Z, Ma L, Li P and Gu L
(2006) A novel method to prepare chitosan powder and its
application in cellulase immobilization. Journal of Chemical
Technology and Biotechnology 81: 189–195
53. Maria BF, Maria RD, Raffaele M, Augusto R and Giuseppe S
(1984) Highly efficient solubilization of natural lignocellulosic
materials by a commercial cellulase immobilized on various solid
supports. Applied Microbiology and Biotechnology 19: 19306-311
54. Martin S (2000) Protein engineering of cellulases. Biochimica et
Biophysica Acta 1543: 239-252
55. Mary M, John K and Richard P (1971) The use of adsorbed
cellulase in the continuous conversion of cellulose to glucose.
Journal of Polymer Science 36: 445-459
56. Masaru Y, Minoru K and Isao K (1979) Immobilization of
cellulose in the swollen microsphere by radiation polymerization.
Polymer journal 11: 915-919
57. Masayuki T, Mikio K and Michihiro F (1989) Properties of a
reversible soluble-insoluble cellulase and its application to repeated
hydrolysis of crystalline cellulose. Biotechnology and Bioengineering
34: 1092-1097
58. Mehta RV, Upadhyay RV, Charles SW and Ramchand CN (1997)
Direct binding of protein to magnetic particles. Biotechnology
Techniques 11: 493–496
59. Milala MA, Shugaba A, Gidado A, Ene AC and Wafar JA (2005)
Studies on the use of agricultural wastes for cellulase enzyme
production by Aspegillus niger. Research Journal of Agriculture and
Biological Sciences 1: 325-328
60. Minoru K and Isao K (1984) Immobilization of cellulase using
porous polymer matrix. Journal of Applied Polymer Science 29:
2713-2718
61. Mona KG and Mohamed AN (2002) Catalytic properties of the
immobilized Aspergillus tamarii xylanase. Research in Microbiology
157: 275–281
62. Okazaki M and Young MM (1978) Kinetics of enzymatic
hydrolysis of cellulose: analytical description of a mechanistic model.
Biotechnology and Bioengineering 20: 637-663
63. Paljevac M, Primozic M, Habulin M, Novak Z and Knez Z (2007)
Hydrolysis of carboxymethyl cellulose catalyzed by cellulose
immobilized on silica gels at low and high pressures. J. of
Supercritical Fluids 43: 74–80
64. Patoomporm C, Yutaka K, Yumi M, Teruo O and Takashi S
(1986) Properties of cellulase immobilized on agarose gel with

spacer. Biotechnology and Bioengineering 30: 1876-1878
65. Peitersen N and Ross EW (1979) Mathematical model for
enzymatic hydrolysis and fermentation of cellulose by Trichoderma.
Biotechnology and Bioengineering 21: 997-1017
66. Qiu GL and Li YL (2000) Immobilization of cellulase on magnetic
agarose composite microsphere. Fine chemicals 17: 115-117
67. Rajiv D (2008) Fundamentals of Biochemical Engineering. Springer
34-37
68. Ryu DY and Lee SB (1982) Effect of compression milling on
cellulose structure and on enzymatic hydrolysis kinetics.
Biotechnology and Bioengineering 24: 1047-1067
69. Saiyed ZM, Sharma S, Godawat R, Telang SD and Ramchand
CN (2007) Activity and stability of alkaline phosphatase (ALP)
immobilized onto magnetic nanoparticles (Fe3O4). Journal of
Biotechnology 131: 240–244
70. Sardar M, Roy I and Gupta MN (2000) Simultaneous purification
and immobilization of Aspergillus niger xylanase on the reversibly
soluble polymer EudragitTM L-100. Enzyme and Microbial
Technology 27: 672–679
71. Song JR, Huang J, Xu KZ and Zhao QY (2003) Production of
citric acid from apple pomace enzymolyzed by cellulase . The
Chinese Journal of Process Engineering 3: 423-427
72. Sreenath HK, Yang VW, Burdsall HH and Jeffries TW (1996)
Toner removal by alkaline-active cellulases from desert
basidiomycetes. Microbial and Biochemical Technology 21: 267-279
73. Stuart ML and Peter G (2004) Presence and properties of cellulase
and hemicellulase enzymes of the gecarcinid land crabs Gecarcoidea
natalis and Discoplax hirtipes. The Journal of Experimental Biology
207: 4095-4104
74. Sulaiman AZ, Yu LF, Kit SC and Sarmad R (2007) Kinetics of
Aspergillus niger cellulase inhibition by reducing sugar produced by
the hydrolysis of carboxymethylcellulose. International Journal of
Chemical Reactor Engineering 5: 1-9
75. Tamio T and Keisuke M (1987) Cellulase immobilized on
poly-l-glutamic acid. Biotechnology and Bioengineering 29: 160-164
76. Velkovska S, Marten MR and Ollis DF (1997) Kinetic model for
batch cellulase production by Trichoderma reesei RUT C30. Journal
of Biotechnology 54: 83–94
77. Wu L, Yuan X and Sheng J (2005) Immobilization of cellulase in
nanofibrous PVA membranes by electrospinning. Journal of
Membrane Science 250: 167–173
78. Yuan X, Shen NX, Sheng J and Wei X (1999) Immobilization of
cellulase using acrylamide grafted acrylonitrile copolymer
membranes. Journal of Membrane Science 155: 101-106
79. Zhang Y, Xu JL, Yuan ZH, Zhuang XS and Li D (2009) Research
progress of cellulase immobilization carriers. Biomass Chemical
Engineering 43: 32-35
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top