(18.232.50.137) 您好!臺灣時間:2021/05/06 17:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蔡惠珊
研究生(外文):Hui-Shan Cai
論文名稱:磺化聚亞醯胺-矽氧烷之膜電極組組裝與特性分析於質子交換膜燃料電池
論文名稱(外文):Study on fabrication and characteristics of Sulfonated poly(imide-siloxane) as Membrane Electrode Assembly for Polymer Electrolyte Membrane Fuel Cells
指導教授:王怡仁王怡仁引用關係
指導教授(外文):Yen-Zen Wang
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:化學工程與材料工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:128
中文關鍵詞:膜電極組電解質磺化聚亞醯胺-矽氧烷
外文關鍵詞:membrane electrode assemblyionomersulfonated poly (imide-siloxane)
相關次數:
  • 被引用被引用:1
  • 點閱點閱:119
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究成功合成出磺化聚亞醯胺質子交換膜。以FT-IR, H1-NMR鑑定其反應特性及結構,其質子交換膜特性分析包含了吸水率、尺寸改變率及質子導電度。並且在全濕環境下與Nafion212比較其質子導電度特性。
本研究改變不同黏結劑含量,探討Nafion® 黏結劑對膜電組的孔隙度和黏著力的物理特性及電化學影響。利用電子掃描顯微鏡和放電極化曲線圖比較磺化聚亞醯胺-矽氧烷膜電極組和Nafion® 212 膜電組對5 wt.% Nafion 電解質的黏結效果。比較0.3mg Pt/cm2和電解質含量35%的磺化聚亞醯胺-矽氧烷膜電極組和0.5mg Pt/cm2和電解質含量 35% 的Nafion® 212 膜電組,由電子顯微鏡和放電極化曲線圖顯示,在電極結構上有相似的孔隙度。磺化聚亞醯胺-矽氧烷膜電極組的電解質含量增加到35%以上可以改善放電極化曲線圖。Nafion® 膜電極組的觸媒電極與磺化聚亞醯胺-矽氧烷質子交換膜電組有相似的傳導性、黏結力和孔隙度。膜電極組的設計,主要是由不同種類高分子及電解質之間的黏結力及觸媒層的緻密程度與否所影響。
In this study, The sulfonated poly (imide-siloxanes) (SPI-SXs) were synthesized using 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTDA), aminopropyl-terminated polydimethylsiloxane (PDMS), 2,2 -benzidinedisulfonic acid (BDSA) as the sulfonated diamine groups. The prepared membranes were characterized in terms of FT-IR, H1-NMR, water uptake, dimensional changes and proton conductivity. Proton conductivity of the SPI-SX membranes was compared with one of the Nafion® membranes with saturated humidity.
The adhesion effect and porosity of catalyst electrodes in membrane-electrode assemblies (MEAs) using a Nafion® ionomer was investigated according to physical and electrochemical properties by varying the content of ionomer binder in the catalyst electrodes. The SPI-SX-based MEAs were compared with the Nafion®-based MEA using Nafion® 212 and 5 wt.% ionomer solution in terms of adhesion values, the scanning electron microscopic(SEM) images and I–V polarization curves. According to the results of SEM and I–V polarization curves, the electrodes using 0.3mg/cm2, 35% and 0.5mg/cm2, 35% loading of Nafion® ionomer for respectivetiveSPI-SX-based and Nafion 212 membranes, might have the similar electrode configuration in terms of porosity. Improvement on electrochemical properties (i.e.I–V polarization curves) was shown up to the Nafion® ionomer content more than of 35% in the catalyst layers for SPI-SX-base membrane. As a result, the performance of the new type polymer (i.e. SPI-SX in this study)-based MEA with the similar membrane conductivity, adhesion effect and porosity of the catalyst electrode in the Nafion® MEA was similar to that of the Nafion® MEA. It is believed that adhesion effect and porosity control suggested in this study can be one of main parameters to design MEA’s electrodes prepared by various polymers.
目錄
致謝-----------------------------------------I
中文摘要-------------------------------------II
英文摘要-------------------------------------III
目錄-----------------------------------------IV
表目錄--------------------------------------VIII
圖目錄---------------------------------------IX
第一章 序論--------------------------------1
1-1燃料電池的發展簡史與現況------------------5
1-2燃料電池的基本原理------------------------8
1-3燃料電池的種類----------------------------9
1-3-1鹼液型燃料電池(AFC)-------------------11
1-3-2 磷酸型燃料電池(PAFC)-----------------11
1-3-3 熔融碳酸鹽型燃料電池(MCFC)-----------12
1-3-4 固態氧化物型燃料電池(SOFC)-----------13
1-3-5 質子交換薄膜型燃料電池(PEMFC)--------13
1-3-6 直接甲醇燃料電池(DMFC)---------------14
1-4 質子交換膜燃料電池(PEMFC)簡介------------15
第二章 文獻回顧------------------------------18
2-1聚亞醯胺的簡介----------------------------18
2-1-1聚亞醯胺的由來------------------------18
2-2 矽氧烷的簡介---------------------------20
2-3 膜電極組的構造及介紹-------------------23
2-3-1 MEA 的結構--------------------------23
2-3-2 陽極電極----------------------------23
2-3-3 質子交換膜--------------------------24
2-3-4 陰極電極----------------------------25
2-3-5 催化層------------------------------26
2-3-6 觸媒漿料配比含量--------------------27
2-4 膜電極組製備方法-------------------------30
2-4-1 熱壓法------------------------------30
2-4-2 直接塗佈法--------------------------31
2-4-3 直接噴灑法--------------------------32
2-5電池極化現象與極化曲線--------------------34
2-5-1 活性過電壓---------------------------35
2-5-2 歐姆過電壓---------------------------36
2-5-3 質傳過電壓---------------------------37
2-6研究動機及目的----------------------------38
第三章 實驗設備與步驟------------------------40
3-1 實驗藥品---------------------------------40
3-2 實驗設備---------------------------------42
3-3 實驗流程---------------------------------46
3-3-1磺化聚亞醯胺-矽氧烷共聚物之反應流程---46
3-3-2磺化聚亞醯胺-矽氧烷反應過程-----------47
3-3-3磺化聚亞醯胺-矽氧烷薄膜置換過程-------48
3-3-4 膜電極組組裝流程---------------------49
3-4 實驗步驟---------------------------------50
3-4-1 BDSA-Et3N的製備----------------------50
3-4-2磺化聚亞醯胺-矽氧烷之製備-------------50
3-4-3質子交換膜的前處理--------------------51
3-4-4電極製備------------------------------52
3-4-5膜電極組組裝--------------------------52
3-4-6單電池(Single Cell)組裝程序-----------52
3-5 儀器原理---------------------------------53
3-5-1 傅立葉紅外線吸收光譜儀
(Fourier Transform Infrared, FT-IR)--------53
3-5-2定電位/電流儀
(Potentiostat/Galvanostat)-----------------55
3-6 材料鑑定與性質分析-----------------------65
3-6-1 磺化聚亞醯胺-矽氧烷共聚物
質子交換膜之鑑定---------------------------65
3-6-2燃料電池測試平台----------------------70
3-6-3膜電極組之場發掃描式電子顯微鏡
(FE-SEM)分析--------------------------------73
第四章 結果與討論----------------------------74
4.1 磺化聚亞醯胺質子交換膜之合成與特性鑑定---75
4.1-1磺化聚亞醯胺-矽氧烷質子交換膜
結構鑑定-----------------------------------76
4.1-1-1傅立葉紅外線光譜 (FT-IR)鑑定結果----76
4.1-1-2 核磁共振光譜鑑定分析---------------79
4.1-2磺化聚亞醯胺與磺化聚亞醯胺-矽氧烷質子
交換膜之物性分析-------------------83
4.2質子交換膜燃料電池效能分析----------------85
4.2-1 Nafion® 212 放電分析-------=---------87
4.2-2磺化聚亞醯胺-矽氧烷 (SPI-SX-5)質子
交換膜燃料電池之電池效能分析----------95
4.2-2-1 磺化聚亞醯胺-矽氧烷(IEC 1.5 meq/g)
質子交換膜燃料電池之單電池效能分析-101
第五章 結論-----------------------------------108
第六章 參考文獻-------------------------------110
1.Woods Hole Oceanographic Institution, Proposals Energy to Transfer Excess Carbon into the Ocean”, Massachusetts, USA, 2008.
2.賴耿陽,燃料電池與電力貯存系統,復漢出版社,1998。
3.衣寶廉,燃料電池—原理與應用,初版,五南圖書,2005。
4.黃鎮江,燃料電池,二版,全華科技圖書股份有限公司,2005。
5.詹世弘,“二十一世紀之星-燃料電池”,燃料電池研習會,元智大學,2000。
6.鄭煜騰,鄭耀宗,“質子交換膜型燃料電池的製造技術” ,能源季刊,27卷,2期,頁118,1997。
7.翁芳柏.徐耀昇,燃料電池實驗教材,亞太燃料電池科技股份有限公司,2005。
8.J. Giner, C. Hunter, “The Mechanism of Operation of the Teflon-Bonded Gas Diffusion Electrode: A Mathematical Model”, J. Electrochem. Soc., 116, 1124-1130, 1969.
9.黃立寧,2003,PTFE/Nafion-TEOS (tetraethoxysilane) 複合膜的製備及性能研究,元智大學,碩士論文。
10.P. M. Heigenisher, N. J. Johnstin, ACS Symp. Ser132, American Chemical society Washington, DC, 3 ,1980.
11.M. G. Voronkov, V. P. Mileshkevich, and Yu. A. Yuzhev-skil, The Siloxane Bond, Consultants Burwan New York and London, 159, 1978
12.M. G. Voronkov, V. P. Mileshkevich, and Yu. A. Yuzhev-skil, The Siloxane Bond, Consultants Burwan New York and London, 159, 1978.
13.A. K. Et Clair, T. L. St Clair, E. N. Smith , Polym. Prepr., 17, 359,. 1976.
14.T. L. St Clair, D. A. Yamaki, Polyimides: Synthesis, characterization, and Applications, Plenum, New York, 1 , 99, 1984.
15.H. Kim, J. Jang, “Corrosion protection and adhesion promotion for polyimide/copper system using silane-modified polymeric materials”, Polymer , 41, 6553-6561, 2000.
16.T. Homma , M. Yamaguchi, Y. Kutsuzawa , N. Otsuka, “Electrical stability of polyimide siloxane films for interlayer dielectrics in multilevel interconnections”, Thin Solid Films , 340, 237-241, 1999.
17.H. R. Kricheldorf, V. Linzer, “Liquid crystalline polyimides: Thermotropic polyimides based on biphenyl-3,3′,4,4′-tetracarboxylic anhydride” , Polymer , 36, 1893-1902, 1995.
18.J. De Abajo, J. G. De La Campa, in Advances In Polymer Science:Progress In Polyimide Chemistry, H. R. Kricheldorf, Editor, 26, Springer, Berlin, 1999.
19.W. K. Lee, Van Zee, J. W. Shimpalee and S. Dutta “ Effect of Humifity on PEM Fuel Cell Performance Part Ⅰ-Expermints”Proceedings of the ASME Heat Transfer Division, HTD-Vol.346-1,
1998, pp.259-366.
20.G. Sasikumar, J. W. Ihm, H.Ryu “Optimum Nafion content in PEM fuel cell electrodes”, Electrochemica Acta, 50,601-605,2004
21.E. Antolini, L. Giorgi, A. Pozio , E.Passalacqua,” Influence of Nafion loading in the catalyst layer of gas-diffusion electrodes for PEFC”, Journal of Power Sources 77,136-142,1999
22.E. Passalacqua , F. Lufrano, G. Squadrito, A. Patti, L. Giorgi,” Nafion content in the catalyst layer of polymer electrolyte fuel cells: effects on structure and performance”, Electrochimica Acta 46, 799-805,2000
23.Z. Qi, A. Kaufman,”Low Pt loading high performance cathodes for PEM fuel cells” Journal of Power Sources, 113, 37-43,2003
24.V. A. Paganin, E. A. Ticianelli, and E. R. Gonzalez “Development and electrochemical studies of gas diffusion electrodes for polymer electrelyte fuel cells ”, Journal of Applied Electrochemistry, 26,197-304, 1996
25.D. Chu, R. Jiang “Comparative studies of polymer electrolyte membrane fuel cell stack and signal cell”, Journal. Power Sources, 80, 226-234,1999
26.S-Y.Cha, J-M. Song, and W-E. Lee “Performance of porton exchange membrane fuel cell electrodes prepared by direct deposition of untrathin platinum on the membrane surface ”, Journal of Applied Electrochemistry, 28, 1413-1418, 1998
27.S. Srinivasan, E. A. Ticianelli, C. R. Derouin, and A.Redondo“Advances in solid polymer electrolyte fuel cell technology with low
platinum loading electrodes”, Journal of Power Source, 22,359-375,1988
28.Y. Chun, C. Kim, D-H. Peck, and D.R. Shin,” Performance of a polymer electrolyte membrane fuel cell with thin film catalyst electrodes” , Journal of Power Source, 71, 174-178, 1998
29.S. Y. Cha, and W. M. Lee “Performance of Proton Exchange Membrane Fuel Cell Electrodes Prepared by Direct Deposition of Ultrathin Plathin on the Membrane Surface”, Journal of
Electrochemical Society, 146 (11), 4055-4060, 1999
30.Z. Ma, X. Liao, Y. Leng, B. Huang, Chemical Industry and Engineering Progress ,18 , 352,1999,
31.Y. Yin, Y. Suto, T. Sakabe, S. Chen, S. Hayashi, T. Mishima, O. Yamada, K. Tanaka, H. Kita, Ken-ichi Okamoto, Macromolecules, 39, 1189-1198 ,2006
32.M. Dawn Bernardi, Verbrugge Mark W., “A Mathematical Model of the Solid-Polymer-Electrolyte Fuel Cell”, Journal Electrochemistry Society,139,2477,1992.
33.T. E. Springer, D. Raistrick, “Electrical Impedance of a Pore Wall for the Flooded Agglomerate Model of Porous Gas Diffusion Electrodes”, Journal Electrochemistry Society,136,1594 ,1989
34.M. S. Wilson, S. Gottesfeld, “High Performance Catalyzed Membranes of Ultra Low Pt Loadings for Polymer Electrolyte Fuel Cells”, Journal Electrochemistry Society, 139, 28,1992
35.Thomas A. Zawodzinski, Jr., Charles Derouin, Susan Radzinski, Ruth J.Sherman, Van T. Smith, Thomas E. springer, Shimshon Gottesfeld, “Water Uptake by and Transport through Nafion 117 Membrane”, Journal Electrochemistry Society, 140, 1041,1993
36.J. Kim, S.-M. Lee, S. Srinivasan, “Modeling of Proton Exchange Membrane Fuel Cell Performance with an Empirical Equation”, Journal Electrochemistry Society, 142, 2670,1995
37.F. Lufrano, E. Passalacqua, G. Squadrito, A. Patti, L. Giorgi,
“Improvement in the Diffusion Characteristics of Low Pt-Loading Electrodes for PEFCs”, Journal Application. Electrochemistry,. 29, 445 ,1999
38.C. H. Lee, Y. Z. Wang, “Synthesis and characterization of epoxy-based semi-Interpenetrating polymer networks sulfonated polyimides proton-exchange membranes for direct methanol fuel cell applications”, Journal Polymer Science Part A: Polymer Chemistry, 46, 2262-2276 ,2008.
39.S. D. Wu, C. H. Lee, C. P. Chou, Y. Z. Wang,” A new Technology of scrape-applied method for the manufacturing of MEA of Fuel-Cell System”, Journal Fuel Cell Science Technolgy 2009 (accept)
40.H. Lee, J. R. Chen, H. W. Shiu, K. S. Ho, S. D. Wu, K. H. Hsieh, Y. Z. Wang,“ Effect of Bridging Groups on Sulfonated Poly(imide-siloxane) for Application in Proton Exchange Membrane of Fuel Cells”, Journal Fuel Cell Science Technolgy 2009(accept)
41.L. Zou, M. Anthamatten, “Synthesis and characterization of polyimide-polysiloxane segmented copolymers for fuel cell applications”, Journal PolymerScience Part A: Polymer Chemistry, 45, 3747–3758, 2007.
42.L. C. Chang, K. H. Wu, “Charactization and degradation of some silicon-containing polyimides”, Polymer Degradation and Stability, 60, 161-168, 1998.
43.D. J. T. Hill, C. M. L. Preston, A. K. Whittaker, “NMR study of the gamma radiolysis of poly (dimethyl siloxane) under vacuum at 303 K,” Polymer, 43, 1051-1059, 2002.
44.蔡信行,2004,聚合物化學,新文京開發出版股份有限公司。
45.J. Fang, X. Guo, S. Harada, T. Watari, K. Tanaka, H. Kita, K.-I. Okamoto, “Novel Sulfonated Polyimides as Polyelectrolytes for Fuel Cell Application. 1. Synthesis, Proton Conductivity, and Water Stability of Polyimides from 4,4''-Diaminodiphenyl Ether-2,2''-disulfonic Acid”, Macromolecules, 35, 9022-9028, 2002.
46.X. Guo, J. Fang, T. Watari, K. Tanaka, H. Kita, and K.-I. Okamoto, “Novel Sulfonated Polyimides as Polyelectrolytes for Fuel Cell Application. 2. Synthesis and Proton Conductivity of Polyimides from 9,9-Bis(4-aminophenyl)fluorene-2,7-disulfonic Acid”, Macromolecules, 35, 6707-6713, 2002.
47.呂俊逸,2000,質子交換膜燃料電池研究—MEA 的製造和性能分析,中山大學,碩士論文
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔