(35.175.212.130) 您好!臺灣時間:2021/05/17 20:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鄭惇方
研究生(外文):Tun-Fang Cheng
論文名稱:新型高分子電解質之合成及其在染料敏化太陽能電池的應用
論文名稱(外文):Synthesis and Photovoltaic Performances of Novel Polyelectrolytes Based Dye Sensitized Solar Cells
指導教授:李榮和李榮和引用關係
指導教授(外文):Rong-ho Lee
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:化學工程與材料工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:125
中文關鍵詞:染料敏化太陽能電池高分子電解質
外文關鍵詞:polyelectrolyteDSSC
相關次數:
  • 被引用被引用:1
  • 點閱點閱:180
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
傳統染料敏化太陽能電池利用液態電解質雖可達到11%的光電轉換效率,但其始終存在電解質漏液造成穩定性不佳的問題。本研究係先以咔唑 (Carbazole) 與茀 (Fluorene) 合成出含四級胺鹽之主鏈型高分子電解質MPCF-E,再經由側鏈接枝上聚矽氧烷分子形成側鏈含四級胺鹽之電解質PCFS-E,並將其分別摻雜至含6wt% 聚氧乙烯 (PEO) 膠態電解質,進行染料敏化太陽能電池之元件製作,並探討其光伏特性。結果顯示含聚矽氧烷分子之側鏈型電解質能降低膠態PEO電解質黏度以及電解質與白金電極介面之電化學反應阻抗,進而使短路電流密度提升至6.16 mA/cm2,光電轉換效率達到1.26 %。
另外本研究將多立面倍半矽氧烷寡聚體 (POSS) 添加於PEO所形成之膠態電解質中,因分子特有的立體障礙與高比表面積使其可以有效降低電解質黏度,當含3wt% PEO之膠態電解質添加入1wt% 的POSS時,可得到最佳的光伏特性,其開環電壓 Voc=0.64 V,短路電流密度Jsc=4.24 mA/cm2,填充因子0.564及光電轉換效率1.534%。
Conventional dye-sensitized solar cells using liquid electrolyte can be achieved, although 11% of the photoelectric conversion efficiency, but there is always the stability problem caused by liquid electrolyte leakage. In this study, main chain polymer electrolyte MPCF-E was synthesized by copymerization of the quaterary ammonium salt containing carbazole and alkyl fluorene. Moreover, the siloxane segment containing side-chain type polymer electrolyte PCFS-E was synthesized by the copymerization of the quaterary ammonium salt containing carbazole and siloxane segment containing fluorene. A series of N719 dye based dye-sensitized solar cells were fabricated from the MPCF-E/PEO and MPCFS-E/PEO blends based gel-type electrolytes. The photovoltaic properties showed that the presence of the MPCFS-E could reduce the viscosity of PEO based gel type electrolyte, and thus reduce the impedance at the interface between the platinum electrodes and electrolyte. The short-circuit current density and photoelectric conversion efficiency of the MPCFS-E/PEO elctrolyte based DSSC can achieve as high as 6.16 mA/cm2 and 1.26%.
In addition, the Polyhedral Oligomeric Silsequioxane (POSS) was added to the PEO based gel type electrolyte. The unique structure of POSS was expected to reduce the viscosity of the PEO electrolyte, and thus helpful for the enhancement of the ionic conductivity of the electrolyte. As a result, better photovoltaic performances were expected to be observed for the POSS/PEO based gel electrolyte. The best photovoltaic properties were observed for the 1 wt. % POSS doped PEO based DSSC.
摘 要 i
ABSTRACT iii
致謝 v
表目錄 x
圖目錄 xi
附錄 xv
第一章 緒論 1
1-1 前言 1
1-2 太陽能電池發展與技術現況 2
1-3 染料敏化太陽能電池簡介 5
1-4 染料敏化太陽能電池工作原理 6
1-5 染料敏化太陽能電池分層結構簡介 8
1-5-1 透明導電基板 8
1-5-2 奈米半導體光電極 9
1-5-3 光敏化染料 10
1-5-4 氧化還原電解質 21
1-5-5 白金對電極 22
1-6 矽氧烷簡介 23
第二章 文獻回顧 25
2-1 膠態電解質 25
2-1-1 膠態高分子電解質 25
2-1-2 離子液體 26
2-1-3 四級胺鹽膠態電解質 28
2-1-4 PEO 膠態電解質 30
2-1-5 SIO2 膠態電解質 32
2-1-6 交聯高分子結構 34
2-2 研究動機與實驗架構 35
第三章 實驗 37
3-1 化學藥品 37
3-2 溶劑前處理 39
3-3 有機/無機複合物高分子電解質之合成 40
3-4 染料敏化太陽能電池元件製作 48
3-5 基本物性檢測儀器 48
3-6 元件製作與其光伏特性量測儀器 50
第四章 結果與討論 52
4-1 高分子電解質之結構鑑定 52
4-3 凝膠滲透層析儀分子量測定 57
4-4 高分子材料熱性質分析 58
4-4-1 熱重分析儀( TGA ) 58
4-4-2 微差熱掃描卡計( DSC ) 60
4-5 光學性質分析-紫外光/可見光光譜分析 62
4-6 電解質之黏度與離子導電度分析 64
4-7 光伏特性分析 69
4-7-1 高分子MPCF系列 69
4-7-2 多立面倍半矽氧烷寡聚體(POSS) 75
4-8 電化學阻抗分析 82
4-8-1 高分子MPCF系列 83
4-8-2 多立面倍半矽氧烷寡聚體(POSS) 90
4-9 元件穩定性測試 94
第五章 結論 96
參考文獻 98
附錄 103
自傳 108
1.A.Hagfeldt, H. Lindstrom, J. Photochem. And Photobio.A: Chem. 145, 107, 2001.
2.H.Tsubomura, M.Matsumura, Y, Nomura, T. Amamaya, Nature 261, 402, 1976.
3.M. O’Regan, M. Grätzel, Nature 353, 737, 1991.
4.A. Hagfeldt, M. Grätzel, Acc. Chem. Res. ,33, 269, 2000.
5.M. Grätzel, Inorg. Chem, 44, 6841, 2005.
6.T. Miyasaka, M. Ikegami and T. Kijitori, J. Electrochem. Soc. 154, A455,2007.
7.G. P. Smestad, M. Gratzel, J. Chem. Educ. 75, 752, 1998.
8.M. Grätzel, Nature 2001, 414, 338
9.M. Grätzel, J. Photochem. And Photobio.A: Chem. 2004, 164, 3.
10.A.Hagfeldt, H. Lindstrom, J. Photochem. And Photobio.A: Chem. 145, 107,2001.
11.D. Zhang, T. Yoshida, and H. Minoura, Adv. Mater. 15, 814, 2003.
12.T. Miyasaka, and Y. Kijitori, J. Electrochem. Soc. 151, A1767, 2004.
13.K. Keis, L. Vayssieres, S-E. Lindquist, A. Hagfeldt, Nanostructured Materials, 12, 487, 1999.
14.S. Ferrere, A. Zaban, B. A. Gregg, J. Phys. Chem. B. 101, 4490, 1997
15.K. Hara, H. Sugihara, Y. Tachibana, A. Islam, M. Yanagida, K. Sayama, and H. Arakawa. Langmuir. 17, 5992, 2001
16.劉茂煌,奈米光電池,工業材料雜誌2003, 203期, 91
17.Randolph Thummel. Iorg. Chem. 45, 10131, 2006
18.Md. K. Nazeeruddin, M. Gratzel, Inog. Chem. 1999, 38, 6298.
19.Md. K. Nazeeruddin, M. Gratzel, J. Phys. Chem. B, 107, 8981, 2003.
20.L. Woolfrey, Kim. S. Finnie, Langmuir, 14, 2744, 1998.
21.M. K. Nazeeruddin, M. Gratzel, J. Am. Chem. SOC ,115, 6382 ,1993.
22.C. Bauer, G. Boschloo, E. Mukhtar, A. Hagfeldt, J. Phys. Chem. B. 106, 12693, 2002.
23.Fumihiko Aiga, Tsukasa Tada, J. Molecular. Structure 25, 658, 2003.
24.呂怡萱,二氧化鈦奈米管於染料敏化太陽能電池之探討,碩士論文,國立中央大學化學研究所,桃園,民國95年
25.B. O ’Regan, D.T. Schwartz, J. Appl. Phys, 80, 4749, 1996.
26.S. Ferrere, A. Zaban, J. Phys. Chem. B. 101, 4490, 1997.
27.S. Ferrere, B.A. Gregg, New J.Chem. 26, 1155, 2002.
28.T. N. Rao, L. Bahadur, J. Electrochem. Soc. 144, 179, 1997.
29.A. C. Khazraji, J. Phys. Chem. 103, 4693, 1999.
30.A.Ehret, L. Stuhl, M.T. Spitler, J. Phys. Chem. B. 105, 9960, 2001.
31.F. G. Gao, A. J. Bard, J. Photochem. Photebiol. A, 130, 49, 2000.
32.T. Yoshida, K. Terada, H. Minoura, Adv. Mater. 12, 1214, 2000.
33.T. Yoshida, H. Minoura, Chem. Commun. 400, 2004
34.Z.-S. Wang, F.-Y. Li, C.-H. Huang, Chem. Commun. 104, 2063, 2000.
35.Z.-S. Wang, F.-Y. Li, C.-H. Huang, J. Phys. Chem. B. 105, 9210, 2001.
36.Q.-H. Yao, L. Shan, C.-H. Huang, New J. Chem. 27, 1277, 2003.
37.K. Sayama, M. Sugino, H. Sugihara, Y. Abe, H. Arekawa, Chem. Lett. 753, 1998.
38.K. Hara, H. Arakawa, Sol. Energy Mater. Sol. Cells , 64, 115, 2000.
39.K. Sayama, S. Tsukagoshi, K. hara, H. Arakawa, J. Phys. Chem. B. 106, 1363, 2002.
40.T.Horiuchi, H. Miura, S. Uchida, Chem. Commun. 3036, 2003
41.A. Kay, M. Gratzel, J. Phys. Chem. 97, 6272, 1993.
42.S. Cherian, C. C. Wamser, J. Phys. Chem. B. 104, 3624, 2000.
43.H. Tian, P.-H. Liu, W. Zhu, E. Gao, D.-J. Wu, S. Cai, J. Mater. Chem. 10 ,2708, 2000.
44.F. Odobel, E. Blart, M. Lagree, M. Villieras, H. Boujtita, N. E. Murr, S. Caramori, C. A. Bignozzi, J. Mater. Chem. 13, 502, 2003.
45.N. Cherepy, G. P. Smestad, M. Gratzel, J. Z. Zhang, J. Phys. Chem. B. 101, 9342, 1997.
46.K. Tennakone, A. R. Kumarasinghe, G. R. R. A. Kumara, P. M. Sirimanne, J. Photochem. Photobiol. A 108, 193, 1997.
47.Q. Dai, J. Rabani, New J. Chem. 26, 421, 2002.
48.K. Hara, Y. Tachibana, Y. Ohga, A. Shinpo, S. Suga, K. Sayama, H. Sugihara, H. Arakawa, Sol. Energy Mater. Sol. Sells. 77, 89, 2003,
49.K. Hara, T. Sato, R. Katoh, A. Furube, Y. Ohga, A. Shinpo, S. Suga, K. Sayama, H. Sugihara, H. Arakawa, J. Phys. Chem. B. 107, 597, 2003.
50.K. Hara, M. Kurashige, Y. Dan-oh, C. Kasada, A. Shinpo, S. Suga, K. Sayama, H. Sugihara, H. Arakawa, New J. Chem. 27, 783, 2003.
51.K. Hara, T. Sato, R. Katoh, A. Furube, T. Yoshitada, M. Murai, A. Shinpo, S. Suga, K. Sayama, H. Arakawa, Adv. Func. Mater. 15, 246, 2005.
52.T. Horiuchi, H. Miura, K. Sumioka, and S. Uchida, J. AM. CHEM. SOC. 126,12218, 2004.
53.C. Longo, M.-A. De Paoli, J. Braz. Chem. Soc. 14, 889, 2003
54.K. Kalyanasundaram, M. Grätzel, Coord. Chem. Rev. 177, 347, 1998.
55.C.A. Kelly, G.J. Meyer, Coord. Chem. Rev. 211, 295, 2001
56.Z. Kebede, S.-E. Lindquist, Sol. Energy Mater. Sol. Cells 51, 291, 1998.
57.Y. Liu, A. Hagfeldt, X.-R. Xiao, Sol. S.-E. Lindquist, Sol. Energy Mater. Cells 55, 267, 1998.
58.G.Oskam, P. C. Searson, J. Phys. Chem. B, 105, 6867, 2001.
59.F. Cao, G. Oskam, P.C. Searson, J. Phys. Chem. 99, 17071, 1995.
60.M. Matsumoto, H. Miyasaki, K. Matsuhiro, Solid State Ion. 89, 263, 1996.
61.Y. Reng, Z. Zhang, E. Gao, S. Fang, S. Cai, J. Appl. Electrochem 31, 445, 2001.
62.W. Kubo, K. Murakoshi, T. Kitamura, Chem. Lett. 12, 1241, 1998.
63.W. Kubo, K. Murakoshi, T. Kitamura, S. Yanagida, J. Phys. Chem. B. 105, 12809, 2001.
64.W. Kubo, T. Kitamura, K. Hanabusa, Y. Wada, S. Yanagida, Chem. Commun. 374, 2002
65.W. Kubo, S. Kambe, S. Nakade, S. Yanagida, J. Phys. Chem. B. 107, 4374, 2003.
66.S. Murai, S. Mikoshiba, H. Sumino, S. Hayase, J. Photochem. Photobiol. A: Chem 148, 33, 2002.
67.P. Wang, S. Zakeeruddin, J.E. Moser, M.K. Nazeeruddin, M. Grätzel Nat. Mater. 20, 402, 2003.
68.S. Fang, J. Kang, Electrochimica Acta. 48, 2487, 2003.
69.S. Fang, J. Kang, Materials Research Bulletin. 39, 2113, 2004.
70.J. Wu, Z. Lan, Electrochimica Acta. 52, 6673, 2007.
71.S. R. Scully, M. T. Lloyd, R. Herrera, Synthetic Matals, 144, 291, 2004.
72.M. Zakeeruddin, M. Grätzel, Journal of Fluorine Chemistry 125, 1241, 2004.
73.C. Huang, F. Li, Z. Chen, Chem. Mater. 18, 5173, 2006.
74.J. Xia, F. Li, C. Huang, J. Zhai, Sol. Energy Mater. Sol. Cells, 90, 944, 2006.
75.A.F. Nogueira, M.-A. De Paoli, I. Montanari, J.R.J. Durrant, J. Phys. Chem. B. 105, 7517, 2001.
76.H. K. Shim, H. J. Cho, Macromolecular. 36, 6704, 2003.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top