(3.210.184.142) 您好!臺灣時間:2021/05/13 18:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:溫鎧聰
研究生(外文):Kai-Tsung Wen
論文名稱:導電性高分子聚苯胺於氣體擴散電極應用之研究
論文名稱(外文):Effect of polyaniline nanofibers mixed with carbon black used as gas diffusion layer for fuel cell applications
指導教授:林智汶
指導教授(外文):Chi-Wen Lin
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:化學工程與材料工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:118
中文關鍵詞:燃料電池氣體擴散層聚苯胺奈米纖維單電池
外文關鍵詞:PolyanilineGas diffusion layerMembrane electrode assemblyfuel cells
相關次數:
  • 被引用被引用:1
  • 點閱點閱:129
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
本論文旨在以聚苯胺奈米纖維混合碳黑做為燃料電池氣體擴散層,探討聚苯胺奈米纖維對氣體擴散層性質與單電池性能的影響。
第一部份為聚苯胺奈米纖維的聚合以及基本性質的探討,本實驗以傳統的化學聚合法為基礎,以ammonium peroxodisulfate(簡稱APS)為氧化劑,HCl、H2SO4為摻雜酸,以快速混合法結合超音波法製作聚苯胺奈米纖維。利用紅外線光譜儀﹙FT-IR﹚以及紫外光譜儀﹙UV-Vis﹚鑑定聚苯胺的分子結構,從光譜圖可以證實已成功聚合出鹽式聚苯胺。以SEM與TEM分析聚苯胺奈米纖維的表面型態以及材料內部的狀況,從圖片結果看來,本研究製備的聚苯胺具有奈米級的纖維結構,其直徑約為 ~50 nm到 ~80nm。 以四點探針儀量測聚苯胺奈米纖維的導電度,並比較摻雜鹽酸與硫酸之聚苯胺奈米纖維導電度的差異(簡稱PANI-Cl NF與 PANI-S NF),在60℃下烘乾一天後,PANI-Cl NF具有較高的導電度,其值可達5.16 ± 0.23(S.cm-1);之後放入80℃下烘乾2小時,發現聚苯胺奈米纖維的導電度都下降,並以PANI-Cl NF下降幅度最大,此情況下,PANI-S NF的導電度反比PANI-Cl NF來得高。
第二部份為探討將PANI-S NF與PANI-Cl NF混合碳黑後製成氣體擴散層的性質,並將其應用於氫氧型燃料電池中,比較其單電池性能。將PANI-S NF與PANI-Cl NF分別加入碳黑(carbon black, CB)和PTFE(polytetrafluoroethylene)的混合物內,之後塗佈於基底層(碳紙)上,製作成氣體擴散層(以下分別簡稱為GDL-CB/PANI-S與GDL-CB/ PANI-Cl)。以接觸角探討GDL-CB/PANI-S、GDL-CB/PANI-Cl與GDL-CB的親疏水性,並分別計算出其表面自由能,從結果得知,GDL-CB/PANI-S最親水,且表面能最大。以壓汞式孔徑分析儀與SEM觀察孔徑分佈以及表面型態,發現混入聚苯胺奈米纖維後,擴散層的大孔洞明顯增多。此外,摻雜不同的酸對孔徑分佈的影響並不大。
之後將擴散層組裝成單電池,在80℃下,比較各氣體擴散層在70~100 %濕度下的電池性能,發現以GDL-CB/PANI-S組裝成的單電池在80~90 %溼度下的電流密度最大,可達2300 mA/cm2;100%濕度時則下降到1800 mA/cm2。GDL-CB/PANI-Cl組裝成的單電池則不受濕度影響,其電流密度約1800 mA/cm2。GDL-CB組裝成的單電池則溼度越高,電流密度越大,其電流密度最大達2200 mA/cm2
The study prepared a serious of gas diffusion layers using carbon black and polyaniline nanofiber (PANI-NF) for proton exchange membrane fuel cell applications. PANI-NF was synthesized in 1M acid solution (HCl and H2SO4) by rapid mixed the oxidant and aniline monomer in the sonochemical environment. UV-Vis and Fourier transformed infrared (FTIR) spectra are used to determine molecular structure. Electron microscopy image show the nanofibrous shape of polyaniline with a diameter of 50nm~80nm.
A serious of polyaniline nanofiber (PANI NF)-incorporated gas diffusion layers (GDL) is prepared to improve the single cell performance of proton exchange membrane fuel cell (PEMFC) under low relative humidity (RH) conditions. Experimental results indicate the (PANI NF)-incorporated GDL have not only higher hydrophilic property but also larger pores than that of the pristine one. Single cell results also indicate membrane electrode assembly (MEA) with a (PANI NF)-incorporated GDL exhibits higher performance at low RH conditions (70%) than that at fully hydrated conditions (100%). This trend stands opposite to the MEA with a pristine GDL as it shows a decreased single cell performance at low RH conditions. On the other hand, observation also indicates the use of H2SO4-doped PANF in GDL can further promote the MEA exhibit higher performances than that of the use of HCl-doped one, especially in low RH conditions. These results indicate the introduction of hydrophilic PANI NF in GDL is advantage for the single cell performance of PEMFC at low RH conditions and it provides a practice route to prevent PEMFC from the water flooding problem that usually occurred at fully hydrated condition.
中文摘要----------------------------------------------------------------------I
英文摘要----------------------------------------------------------------------Ⅲ
誌 謝------------------------------------------------------------------------Ⅴ
總目錄------------------------------------------------------------------------Ⅵ
表目錄------------------------------------------------------------------------IX
圖目錄------------------------------------------------------------------------Ⅹ

一、緒論-----------------------------------------------------------------------1
1.1 前言--------------------------------------------------------------1
1.2 燃料電池的發展歷史與現況------------------------------------------4
1.3 燃料電池的特點----------------------------------------------------5
1.4 燃料電池的種類----------------------------------------------------6
1.5 質子交換膜燃料電池簡介--------------------------------------------8
二、文獻回顧------------------------------------------------------------------12
2.1 導電性高分子-----------------------------------------------------12
2.2 聚苯胺-----------------------------------------------------------15
2.3 聚苯胺的特性-----------------------------------------------------19
2.4 聚苯胺奈米纖維的特性--------------------------------------------20
2.5 聚苯胺奈米纖維的合成方式----------------------------------------23
2.5.1 硬模板聚合法------------------------------------------------------------24
2.5.2 軟模板聚合法------------------------------------------------------------25
2.5.3 種子聚合法--------------------------------------------------------------26
2.5.4 無模板聚合法------------------------------------------------------------27
2.5.4.1 界面聚合法------------------------------------------------------------27
2.5.4.2 快速混合法------------------------------------------------------------30
2.5.4.3 超音波合成法----------------------------------------------------------33
2.5.5 電化學聚合法------------------------------------------------------------33
2.6 氣體擴散層簡介--------------------------------------------------35
2.7 氣體擴散層的主要性質--------------------------------------------------36
2.7.1 親疏水性----------------------------------------------------------------36
2.7.2 孔徑分佈----------------------------------------------------------------39
2.7.3 導電性------------------------------------------------------------------43
2.8 聚苯胺應用於氣體擴散層------------------------------------------------44
2.9 研究動機--------------------------------------------------------------48
三、原理----------------------------------------------------------------------50
3.1 傅立葉紅外線吸收光譜儀-------------------------------------------50
3.2 紫外光-可見光吸收光譜儀------------------------------------------51
3.3 四點探針儀-------------------------------------------------------52
3.4 掃瞄式電子顯微鏡-------------------------------------------------53
3.5 接觸角之相關原理-------------------------------------------------54
3.5.1 接觸角的定義------------------------------------------------------------54
3.5.2 接觸角的測定------------------------------------------------------------54
3.5.3 表面自由能簡介----------------------------------------------------------55
3.5.4 經由接觸角計算表面自由能之原理------------------------------------------55
3.6 壓汞式孔隙分析儀-------------------------------------------------58
3.7 穿透式電子顯微鏡-------------------------------------------------58
3.8 極化曲線---------------------------------------------------------59
四、實驗方法------------------------------------------------------------------62
4.1 實驗藥品---------------------------------------------------------62
4.2 實驗儀器---------------------------------------------------------63
4.3 聚苯胺奈米纖維製程-----------------------------------------------64
4.4 氣體擴散層製程------------------------------------------------66
4.5 聚苯胺奈米纖維性質分析與鑑定------------------------------------------66
4.5.1 傅利葉紅外光譜分析--------------------------------------66
4.5.2 紫外光-可見光光譜分析-----------------------------------66
4.5.3 導電度分析----------------------------------------------66
4.5.4 表面型態分析--------------------------------------------67
4.6 氣體擴散層性質分析----------------------------------------------------68
4.6.1 接觸角分析--------------------------------------------------------------68
4.6.2 表面型態分析------------------------------------------------------------68
4.7 單電池測試------------------------------------------------------------69
五、結果與討論----------------------------------------------------------------70
5.1 聚苯胺表面型態分析-----------------------------------------------70
5.1.1 單體與氧化劑用量對表面型態的影響---------------------------------70
5.1.2 一維奈米結構判定-------------------------------------------------73
5.1.3 不同摻雜酸對聚苯胺表面型態的影響---------------------------------74
5.2 聚苯胺奈米纖維FTIR分析-------------------------------------------76
5.3 聚苯胺奈米纖維UV-Vis分析-----------------------------------------78
5.4 聚苯胺奈米纖維導電性測試-----------------------------------------79
5.5 氣體擴散層接觸角分析---------------------------------------------81
5.6 氣體擴散層孔徑分析-----------------------------------------------85
5.7 氣體擴散層表面型態分析-------------------------------------------87
5.8 單電池測試-------------------------------------------------------90
六、結論----------------------------------------------------------------------94
七、參考文獻------------------------------------------------------------------97
1. International Energy Outlook 2005, U.S. Department of Energy & Energy Information Administration, 2005.
2. J. Larminie, A. Dicks, “Fuel Cell Systems Explained”, John Wiley & Sons, New York (2001)
3. S. S. Penner, “Energy”, Oxford, 11, 1-229, (1986)
4. A. J. Appleby, F. R. Foulkes, “Fuel Cell Handbook”, Van Nostrand Reinhold, New York, (1989)
5. 黃鎮江,”燃料電池”,全華科技圖書股份有限公司 (2003)
6. Y. P. Patil, T. A. P. Seery, M.T. Shaw, R.S. Parnas. “In situ water sensing in a Nafion membrane by fluorescence spectroscopy”, Industrial and Engineering Chemistry Research, 44, 6141-6147 (2005)
7. X. Gilpa, M. Hogarth, "Department of Trade and Industry (UK) Homepage, Available on: http://www.dtigov.uk/renewable/ pdf/f0200189.pdf”, Last retrieved November 2 (2001)
8. M. Rikukawa, K. Sanui, “Proton conducting polymer electrolyte membranes based on hydrocarbon polymers”, Progress in Polymer Science, 25, 1463–1502 (2000)
9. G. Inzelt, M. Pineri, J.W. Schultze, M.A. Vorotyntsev, “Electron and proton conducting polymers: recent developments and prospects”, Electrochimica Acta, 45, 2403-2421 (2000)
10. H. Shirakawa, E. J. Louis, A.G. MacDiarmid, C. K. Chiang and A. J. Heeger, “Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x”, Journal of the Chemical Society, Chemical Communications, 578 (1977).
11. A.G. MacDiarmid, “Synthetic metals: a novel role for organic polymers”, Synthetic Metals, 125, 11–22 (2001)
12. D. M. Mohilner, R. N. Adams, W. J. Argersinger, “Investigation of the Kinetics and Mechanism of the Anodic Oxidation of Aniline in Aqueous Sulfuric Acid Solution at a Platinum Electrode”, Journal of the American Chemical Society, 84, 3618-3622 (1962)
13. Y. Cao, P. Smith, A.J. Hegger, “Counter-ion induced processibility of conducting polyaniline”, Synthetic Metal, 55-57, 3514 (1993)
14. 楊振毅, 民85.06.13, “導電性高分子複合膜材料在乙醇氣體感測之應用”, 台灣工業技術學院碩士論文
15. J. Bacon and R. N. Adams, “Anodic oxidations of aromatic amines Substituted anilines in aqueous media”, Journal of the American Chemical Society, 90, 6596-6899 (1968)
16. A.G. Macdiarmid, J.C. Chiang, W. Huang, B.D. Humphrey, N.L.D. Somasiri, “Polyaniline: Protonic Acid Doping to the Metallic Regime”, Molecular Crystals and Liquid Crystals, 125, 309-318 (1985)
17.A.G. Macdiarmid, J.C. Chiang, A.F. Richter, A.J. Epstein, “Polyaniline: a new concept in conducting polymers”, Synthetic Metal, 18, 285-290 (1987)
18. D. Li, R.B. Kaner, “Shape and aggregation control of nanoparticles:
Not shaken, not stirred”, Journal of the American Chemical Society, 128, 968–975 (2006)
19. D. Li, R.B. Kaner, “Processable stabilizer-free polyaniline nanofiber aqueous colloids”, Chemical Communications, 3286–3288 (2005)
20. J. Huang, S. Virji, B.H. Weiller, R.B. Kaner, “Nanostructured Polyaniline Sensors”, Chemistry-A European Journal, 10, 1314-1319 (2004)
21. S. Virji, R.B. Kaner, B.H. Weiller, “Hydrogen Sensors Based on Conductivity Changes in Polyaniline Nanofibers”, The Journal of Physical Chemistry B, 100, 22266-22270 (2006)
22. H. Zhang, J. Wang, Z. Zhou, Z. Wang, “Preparation of Nanostructured Polyaniline and its Super-Amphiphilic Behavior”, Macromolecular Rapid Communications, 29, 68–73.(2008)
23. A.G. MacDiarmid, W.E. Jones Jr., I.D. Norris, J. Gao, A.T. Johnson Jr., N.J. Pinto, J. Hone, B. Han, F.K. Ko, H. Okuzaki, M. Llaguno, “Electrostatically-generated nanofibers of electronic polymers”, Synthetic Metals, 119, 27-30 (2001)
24. H.X. He, C.Z. Li, N.J. Tao, “Conductance of polymer nanowires fabricated by a combined electrodeposition and mechanical break junction method”, Applied Physics Letters, 78, 811-813 (2001)
25. R.M. Penner, C.R. Martin, “Controlling the Morphology of Electronically Conductive Polymers”, Journal of The Electrochemical Society, 133, 2206-2207 (1986)
26. C.R. Martin, “Template Synthesis of Electronically Conductive Polymer Nanostructures”, Accounts of Chemical Research, 28, 61-68 (1995)
27. C.R. Martin, “Membrane-Based Synthesis of Nanomaterials”, Chemistry of Materials, 8, 1739-1746 (1996)
28. M. Nishizawa, V.P. Menon, C.R. Martin, “Metal Nanotubule Membranes with Electrochemically Switchable Ion-Transport Selectivity”, Science, 268 700-702 (1995)
29. V.P. Menon, C.R. Martin, “Fabrication and Evaluation of Nanoelectrode Ensembles”, Analytical Chemistry, 67, 1920-1928 (1995)
30. C.G. Wu, T. Bein, “Conducting Carbon Wires in Ordered, Nanometer-Sized Channels”, Science, 266, 1013-1015 (1994)
31. C.G. Wu, T. Bein, “Conducting Polyaniline Filaments in a Mesoporous Channel Host”, Science, 264, 1757-1759 (1994)
32. S.M. Yang, K.H. Chen, Y.F. Yang, “Synthesis of polyaniline nanotubes in the channels of anodic alumina membrane”, Synthetic Metals, 152, 65-68 (2005)
33. Z. Cai, C.R. Martin, “Electronically conductive polymer fibers with mesoscopic diameters show enhanced electronic conductivities”, Journal of the American Chemical Society, 111 4138-4139 (1989)
34. J. Duchet, R. Legras, S. Demoustier-Champagne, “Chemical synthesis of polypyrrole: structure–properties relationship”, Synthetic Metals, 98, 113-122 (1998)
35. Z.X. Wei, Z.M. Zhang, M.X. Wan, “Formation Mechanism of Self-Assembled Polyaniline Micro/Nanotubes”, Langmuir, 18, 917-921 (2002)
36. H.J. Qiu, M.X.Wan, B. Matthews, L.M. Dai, “Conducting Polyaniline Nanotubes by Template-Free Polymerization”, Macromolecules, 34, 675-677 (2001)
37. Z.M. Zhang, Z.X. Wei, M.X. Wan, “Nanostructures of Polyaniline Doped with Inorganic Acids”, Macromolecules, 35, 5937-5942 (2002)
38. A.D.W. Carswell, E.A. O’Rear, B.P. Grady, “Adsorbed Surfactants as Templates for the Synthesis of Morphologically Controlled Polyaniline and Polypyrrole Nanostructures on Flat Surfaces: From Spheres to Wires to Flat Films”, Journal of the American Chemical Society, 125, 14793-1480 (2003)
39. Y.F. Ma, J.M. Zhang, G.J. Zhang, H.X. He, “Polyaniline Nanowires on Si Surfaces Fabricated with DNA Templates”, Journal of the American Chemical Society, 126, 7097-7101 (2004)
40. J.M. Liu, S.C. Yang, “Novel colloidal polyaniline fibrils made by template guided chemical polymerization”, Journal of the Chemical Society, Chemical Communications, 1529–1531 (1991)
41. J. Kan, R. Lv, S. Zhang, “Effect of ethanol on properties of electrochemically synthesized polyaniline”, Synthetic Metals, 145 37-42 (2004)
42. M.X. Wan, J.C. Li, “Formation mechanism of polyaniline microtubules synthesized by a template-free method”, Journal of Polymer Science Part A: Polymer Chemistry, 38, 2359-2364 (2000)
43. N.J. Pinto, P.L. Carri′on, A.M. Ayala, M. Ortiz-Marciales, “Temperature dependence of the resistance of self-assembled polyaniline nanotubes doped with 2-acrylamido-2-methyl-1- propanesulfonic acid”, Synthetic Metals, 148, 271-274 (2005)
44. Z.X. Wei, M.X. Wan, “Synthesis and characterization of self-doped poly(aniline-co-aminonaphthalene sulfonic acid) nanotubes”, Journal of Applied Polymer Science, 87, 1297-1301 (2003)
45. J.H. Hwang, S.C. Yang, “Morphological modification of polyaniline using polyelectrolyte template molecules”, Synthetic Metals, 29, 271-276 (1989)
46. Y.S. Yang, M.X. Wan, “Chiral nanotubes of polyaniline synthesized by a template-free method”, Journal of Materials Chemistry, 12, 897-901 (2002)
47. W.G. Li, H.L. Wang, “Oligomer-Assisted Synthesis of Chiral Polyaniline Nanofibers”, Journal of the American Chemical Society, 126, 2278-2279 (2004)
48. R.C.Y. King, F. Roussel, “Morphological and electrical characteristics of polyaniline nanofibers”, Synthetic Metals, 153, 337-340 (2005)
49. G.L. Teoh, K.Y. Liew, W.A.K. Mahmood, “Preparation of polyaniline-Al2O3 composites nanofibers with controllable conductivity”, Materials Letters, 61, 4947-4949 (2007)
50. X.M. Feng, G. Yang, Q. Xu,W.H. Hou, J.J. Zhu, “Self-Assembly of Polyaniline/Au Composites: From Nanotubes to Nanofibers”, Macromolecular Rapid Communications, 27, 31-36 (2006)
51. X. Jing, Y. Wang, D. Wu, L. She, Y. Guo, “Polyaniline Nanofibers Prepared with Ultrasonic Irradiation”, Journal of Polymer Science Part A: Polymer Chemistry, 44, 1014-1019 (2006)
52. X. Zhang , R. C.-Y.-King , A. Jose , S. K. Manohar, Nanofibers of polyaniline synthesized by interfacial polymerization, Synthetic Metals, 145, 23-29 (2004)
53. J. Huang, R.B. Kaner, “The intrinsic nanifibrillar morphology of polyaniline”, Chemical Communications, 367-376 (2006)
54. S. Virji, J Huang, R.B. Kaner, B.H. Weiller, “Polyaniline Nanofiber Gas Sensors:Examination of Response Mechanisms”, Nano Letters, 4, 491-496 (2004)
55. J.X. Huang, S. Virji, B.H. Weiller, R.B. Kaner, “Polyaniline Nanofibers: Facile Synthesis and Chemical Sensors”, Journal of the American Chemical Society, 125, 314-315 (2003)
56. J.X. Huang, R.B. Kaner, “A General Chemical Route to Polyaniline Nanofibers”, Journal of the American Chemical Society, 126 851-855 (2004)
57. J. Huang, R.B. Kaner, “Nanofiber Formation in the Chemical Polymerization of Aniline: A Mechanistic Study”, Angewandte Chemie International Edition, 43, 5817-5821 (2004)
58. W.G. Li, H.L. Wang, “Oligomer-Assisted Synthesis of Chiral Polyaniline Nanofibers”, Journal of the American Chemical Society, 126, 2278-2279 (2004)
59. X.M. Feng, G. Yang, Q. Xu,W.H. Hou, J.J. Zhu, “Self-Assembly of Polyaniline/Au Composites: From Nanotubes to Nanofibers”, Macromolecular Rapid Communications, 27, 31-36 (2006)
60. X.L. Jing, Y.Y. Wang, D. Wu, L.She, Y. Guo, “Polyaniline Nanofibers Prepared with Ultrasonic Irradiation”, Journal of Polymer Science Part A: Polymer Chemistry, 44, 1014–1019 (2006)
61. J. Liu, Y. Lin, L. Liang, J.A. Voigt, D.L. Huber, Z.R. Tian, E. Coker, B. Mckenzie, M.J. Mcdermott, “Templateless Assembly of Molecularly Aligned Conductive Polymer Nanowires : A New Approach for Oriented Nanostructures”, Chemistry-A European Journal, 9, 604-611 (2003)
62. M. Neergat, A.K. Shukla, “Effect of diffusion-layer morphology on the performance of solid-polymer-electrolyte direct methanol fuel cells”, Journal of Power Sources, 104, 289-294 (2002)
63. S. Litster, G. McLean, “PEM fuel cell electrodes”, Journal of power sources 130 61-76 (2004)
64. X. L. Wang, H.M. Zhang, J.L. Zhang, H.F. Xu, Z.Q. Tian, J. Chen, H.X. Zhong, Y.M. Liang, B.L. Yi, “Micro-porous layer with composite carbon black for PEM fuel cell”, Electrochimica Acta 51 4909-4915 (2006)
65. J. Jiang, B. Yi, “Thickness effects of a carbon-supported platinum catalyst layer on the electrochemical reduction of oxygen in sulfuric acid solution”, Journal of Electroanalytical Chemistry, 577 107-115 (2005)
66. S. Shimpalee, U. Beuscher, J.W. Van Zee, “Analysis of GDL flooding effects on PEMFC performance”, Electrochimica Acta, 52 6748-6754 (2007)
67. S. Park, J.W Lee, B.N. popov, “Effect of PTFE content in microporous layer on water management on PEM fuel cell”, Journal of Power Sources, 177, 457-463 (2008)
68. C. Lim, C.Y. Wang, “Effects of hydrophobic polymer content in GDL on power performance of a PEM fuel cell”, Electrochimica Acta, 49, 4149-4156 (2004)
69. E.D. Wang, P.F.Shi, C.Y Du, “Treatment and characterization of gas diffusion layers by sucrose carbonization for PEMFC applications”,
Electrochemistry Communications, 10, 555-558 (2008)
70. A.M. Kannan, L. Cindrella, L. Munukutla, “Functionally graded nano-porous gas diffusion layer for proton exchange membrane fuel cells under low relative humidity conditions”, Electrochimica Acta 53 2416-2422 (2008)
71. M.V. Williams, E. Begg, L. Bonville, H. R. Kunz, J.M. Fentona, “Characterization of Gas Diffusion Layers for PEMFC”, Journal of The Electrochemical Society, 151 A1173-A1180 (2004)
72. A.Z. Weber, J. Newman, “Effects of microporous layers in polymer electrolyte fuel cells”, Journal of The Electrochemical Society, 152, A677-A688 (2005)
73. S. Park, J.W. Lee, B.N. Popov, “Effect of carbon loading in microporous layer on PEM fuel cell performance”, Journal of Power Sources, 163, 357-363 (2006)
74. H. Tang, S. Wang, M. Pan, R. Yuan, “Porosity-graded micro-porous layers for polymer electrolyte membrane fuel cells”, Journal of Power Sources 166 41-46 (2007)
75. J. Chen, T. Matsuura, M. Hori, “Novel gas diffusion layer with water management function for PEMFC”, Journal of Power Sources 131 155-161 (2004)
76. H. Meng, C.Y. Wang, “Electron transport in PEFCs”, Journal of The Electrochemical Society, 151, A358-A367 (2004)
77. 王曉麗. 張華民, 張建魯, 徐海峰, 衣寶廉, “質子交換模燃料電池氣體擴散層的研究進展”, Progress in Chemictry, 18 (2006) 507-513
78. C.J. Bapat, S.T. Thynell, “Effect of anisotropic electrical resistivity of gas diffusion layers (GDLs) on current density and temperature distribution in a Polymer Electrolyte Membrane (PEM) fuel cell”, Journal of Power Sources 185, 428-432 (2008)
79. J. Yang, P.K. Shen, J. Varcoe, Z. Wei, “Nafion/polyaniline composite membranes specifically designed to allow proton exchange membrane fuel cells operation at low humidity”, Journal of Power Sources, 189, 1016-1019 (2009)
80. A.G. Zabrodski, M.E. Kompan, V.G. Malyshkin, I.Y. Sapurina, “Carbon Supported Polyaniline as Anode Catalyst: Pathway to Platinum-Free Fuel Cells”, Technical Physics Letters, 32, 758-761 (2006)
81. H. Gharibi, M. Zhiani, R.A. Mirzaie, M. Kheirmand, A.A. Entezami, K. Kakaei, M. Javaheri, “Investigation of polyaniline impregnation on the performance of gas diffusion electrode (GDE) in PEMFC using binary of Nafion and polyaniline nanofiber”, Journal of Power Sources 157 703-708 (2006)
82. H. Gharibi, M. Zhiani, R.A. Mirzaie, M. Kheirmand, A.A. Entezami, K. Kakaei, “Study of polyaniline doped with trifluoromethane sulfonic acid in gas-diffusion electrodes for proton-exchange membrane fuel cells”, Journal of Power Sources 155 138-144 (2006)
83. S. Joseph, J.C. McClure, R. Chianelli, P. Pich, P.J. Sebastian, International Journal of Hydrogen Energy, 30, 1339-1344 (2005)
84. 柯以侃、周心如、董慧茹、賀秀平、張新祥, “儀器分析儀”, 新文京發出版有限公司
85. F.J. Humphreys, “The Scanning Electron Microscope”, Institute of Metals, London (1988)
86. J.S. Rowlinson, B. Widom, “Molecular Theory of Capillarity”, Oxford Science Publications (1982)
87. M.R.C.A. Santos, K. Fagelman, J.T. Guthrie, “Characterisation of the surface Lewis acid–base properties of the components of pigmented, impact-modified, bisphenol A polycarbonate–poly(butylene terephthalate) blends by inverse gas chromatography–phase separation and phase preferences”, Journal of Chromatography A, 969 119-132 (2002)
88. F. Thielmann, “Introduction into the characterisation of porous materials by inverse gas chromatography”, Journal of Chromatography A, 1037 115-123 (2004)
89. R.L. Clough, “High-energy radiation and polymers: A review of commercial processes and emerging applications”, Nuclear Instruments and Methods in Physics Research section B, 185, 8-32 (2001)
90. D. K. Owens, R. C. Wendt, “Estimation of the surface free energy of polymers”, Journal of Applied Polymer Science, 13, 1741-1747 (1969)
91. 陳孟震, “以含浸還原法製備PEMFC膜電極組與電池”, 國立成功大學化工所, 碩士論文 (2000)
92.S. Miachon, P. Aldebert, “Internal hydration H2/O2 100 cm2 polymerelectrolyte membrane fuel cell”, Journal of Power Sources, 56, 31-36 (1995)
93. M. Trchova, I. Sedenkova, E. Tobolkova, J. Stejskal, “FTIR spectroscopic and conductivity study of the thermal degradation of polyaniline films”, Polymer Degradation and Stability, 86, 179-185 (2004)
94. S. Quillard, G. Louarn, J.P. Buisson, M. Boyer, M. Lapkowski, A. Pron, “Vibrational spectroscopic studies of the isotope effects in polyaniline”, Synthetic Metal, 84, 805-806 (1997)
95. J.C. Chiang, A.G. MacDiarmid, “Polyaniline: Protonic acid doping of the emeraldine form to the metallic regime”, Synthetic Metal, 13 193-205 (1986)
96. S.E. Moulton, P.C Innis, L.A.P. Kane-Maguire, O. Ngamna, G.G. Wallace, “Polymerisation and characterisation of conducting polyaniline nanoparticle dispersions”, Current Applied Physics 4 402–406 (2004)
97. Y.Long, Z. Chen, N. Wang, Z. Zhang, M. Wan, “Resistivity study of polyaniline doped with protonic acids”, Physica B, 325 208–213 (2003)
98. M.V. Kulkarni, A.K. Viswanath, R. Marimuthu and U. P. Mulik, “Investigation of effect of protonic acid media on the optical and thermal properties of chemically synthesized poly(o-toluidine)”, Journal of Materials Science: Materials in Electronics, 15, 781-785 (2004)
99. Z. Zhang, Z. Wei, and M. Wan, “Nanostructures of Polyaniline Doped with Inorganic Acids”, Macromolecules, 35 5937-5942 (2002)
100.P. Rannou, M. Nechtschein, J. P. Travers, D. Berner, A. Wolter, D. Djurado, “Ageing of PANI: chemical, structural and transport consequences,” Synthetic Metal, 101, 734-737, (1999)
101.D. Zhang, J. H. Hwang, S. C. Yang, “Polyaniline: Kinetics of electrochemical doping studied by time resolved absorption spectroscopy”, Synthetic Metal, 29, 251-256 (1989)
102.M. Ghosh, A. Barman, A. K. Meikap, S. K. De, S. Chatterjee, S. K. Chattopadhyay, “Electrical Resistivity and Magnetoresistivity of Protonic Acid (H2SO4 and HCl)-Doped Polyaniline at Low Temperature”, Journal of Applied Polymer Science, 75, 1480-1486 (2000)
103.M.J. Liu, K. Tzou, R.V. Gregory, “Influence of the doping conditions on the surface energies of conducting polymers”, Synthetic Mwtals, 63, 67-71 (1994)
104.J. Yu, Y. Yoshikawa, T. Matsuura, M.N. Islam, M. Hori, “Preparing Gas-Diffusion Layers of PEMFCs with a Dry Deposition Technique” Electrochemical and Solid-State Letters, 8, A152-A155 (2005)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔