(18.232.50.137) 您好!臺灣時間:2021/05/06 18:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:詹勳源
研究生(外文):Syun-Yuan Jhan
論文名稱:以幾丁聚醣製備質子傳導膜之研究
論文名稱(外文):Preparation of Chitosan-based Proton Conducting Membranes for Fuel Cell Applications
指導教授:林智汶
指導教授(外文):Chi-Wen Lin
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:化學工程與材料工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:93
中文關鍵詞:質子傳導膜幾丁聚醣5-甲醛基-2-呋喃磺酸鈉燃料電池
外文關鍵詞:chitosan5-Formyl-2- furansulfonic acid sodium salt (FFSfuel cellproton conducting membrane
相關次數:
  • 被引用被引用:0
  • 點閱點閱:156
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文旨在改質幾丁聚醣作為質子傳導膜,以應用於燃料電池。本研究利用化學改質方式修飾幾丁聚醣薄膜,以5-甲醛基-2-呋喃磺酸鈉作為磺酸化劑製備不同磺酸化程度之幾丁聚醣薄膜,並且探討鈉型與氫型薄膜在其性質表現上差異。所製備的薄膜藉由傅立葉紅外線光譜儀、X光繞射儀、掃描式電子顯微鏡及能量分散光譜儀鑑定薄膜之鍵結、結晶以及型態等,而熱穩定性及熱烈解溫度以熱重分析儀分析。
藉由紅外線光譜鑑定與分析,可知磺酸根接在幾丁聚醣薄膜C2胺基之上,當磺化程度增加時,C2胺基所呈現波峰往低波數位移;由XRD圖譜可知未磺化前幾丁聚醣薄膜2θ=11°, 2θ=20°分別為幾丁聚醣的一級與二級晶型的結晶峰,經磺酸化之後2θ=11°結晶峰消失而 2θ=20°處結晶峰變得更寬廣,表示結晶區經磺化反應而減少。以交流阻抗測試薄膜的質子傳導率,未磺酸化之幾丁聚醣薄膜導電度為3.1×10 -3 S/cm磺酸化後,鈉型導電度(1.05 ~ 4.02)×10-4 S/cm ;氫型導電度(3.24~4.26)×10-2S/cm,
最高值為Nafion®115(3.1×10-2S/cm)的1.37倍。幾丁聚醣薄膜含水率介於200~300%之間,鈉型磺酸根之飽和含水率隨著磺酸根比例增加,其薄膜含水率呈現下降的趨勢。Nafion®115薄膜的甲醇滲透率文獻值為(2.3~6.0) ×10-6 cm2/sec,而本實驗中Nafion®115
膜的滲透係數約為2.37×10-6 cm2/Sec,Na-F20-50CS100系列之甲醇滲透率(Permeability)介於(6.34~ 8.91) × 10-7cm2/sec之間,H-F20-50CS100之甲醇滲透率(1.36~2.13)×10-6 cm2/sec,比較H-F33CS100之選擇率為Nafion® 115 之3倍,薄膜的機械強度,以拉伸測試可知隨著磺化比例上升,薄膜之拉伸強度有下降的趨勢,其中最佳之拉伸強度可達84.1Mpa。
This study prepared a serious of proton conducting membranes using chitosan as matrix and 5-Formyl-2- furansulfonic acid sodium salt (FFSA) as sulfonated agent through a chemical graft process. The sulfonated degree of the chitosan membranes was controlled by the amounts of FFSA and characterized by Fourier transform-infrared spectrometer (FT-IR), X-ray diffractometer (XRD), and energy dispersive X-ray (EDX). The proton conductivity and methanol permeability of the membranes with different sulfonated degree were also investigated in this study. The proton conductivities of the sulfonated chitosan (SuCS) membrane measures in the range from 3.24×10-2 to 4.26×10-2 S/cm , which are all higher than that of Nafion-115 (3.1×10-2 S/cm). Moreover, note that the methanol permeability of SuCS membranes (6.3 - 8.4×10-7 cm2/sec) is also significantly lower than that of Nafion-115 (2.37×10-6 cm2/sec) under the same conditions. On the other hand, the tensile strength results also indicate the SuCS chitosan membranes have better mechanical properties than that of Nafion-115. Among above results, this study reported the SuCS membranes, which have not only higher proton conductivity and mechanical property but also lower methanol permeability, are suitable for fuel cell applications
中文摘要 ------------------------------------------------------------------------------ i
英文摘要 ------------------------------------------------------------------------------ iii
誌謝 ------------------------------------------------------------------------------ iv
目錄 ------------------------------------------------------------------------------ v
表目錄 ------------------------------------------------------------------------------ vii
圖目錄 ------------------------------------------------------------------------------ viii
一、 緒論------------------------------------------------------------------------ 1
1.1 前言------------------------------------------------------------------------ 1
1.2 燃料電池發展背景------------------------------------------------------ 1
1.3 燃料電池的發展歷史與現況------------------------------------------ 2
1.4 燃料電池的種類--------------------------------------------------------- 4
1.4.1 質子交換膜燃料電池簡介--------------------------------------------- 6
1.4.2 直接甲醇型燃料電池簡介--------------------------------------------- 7
1.5 研究動機與目的--------------------------------------------------------- 8
二、 文獻回顧------------------------------------------------------------------ 9
2.1 幾丁聚醣的介紹--------------------------------------------------------- 9
2.2 幾丁聚醣物理與化學性質--------------------------------------------- 11
2.3 幾丁聚醣應用領域------------------------------------------------------ 16
2.4 Nafion®質子交換膜----------------------------------------------------- 18
2.5 質子交換膜中質子的傳導機制--------------------------------------- 19
2.6 以幾丁聚醣為基材之質子交換膜------------------------------------ 22
三、 實驗原理------------------------------------------------------------------ 26
3.1 傅立葉紅外線吸收光譜儀--------------------------------------------- 26
3.2 掃描式電子顯微鏡------------------------------------------------------ 27
3.3 能量散佈光譜儀--------------------------------------------------------- 28
3.4 交流阻抗分析------------------------------------------------------------ 28
3.5 甲醇滲透率--------------------------------------------------------------- 36
3.6 拉伸測試(Tensile test)原理--------------------------------------------- 40
3.7 熱重量分析--------------------------------------------------------------- 41
四、 實驗方法與步驟--------------------------------------------------------- 42
4.1 實驗藥品------------------------------------------------------------------ 42
4.2 實驗儀器------------------------------------------------------------------ 43
4.3 薄膜製備------------------------------------------------------------------ 44
4.4 實驗規劃與嘗試--------------------------------------------------------- 47
4.5 薄膜之分析與鑑定------------------------------------------------------ 51
4.5.1 傅立葉紅外線光譜分析------------------------------------------------ 51
4.5.2 交流阻抗實驗流程------------------------------------------------------ 51
4.5.3 飽和含水率實驗流程--------------------------------------------------- 52
4.5.4 離子交換容量實驗流程------------------------------------------------ 52
4.5.5 甲醇滲透率實驗--------------------------------------------------------- 52
4.5.6 拉伸測試------------------------------------------------------------------ 54
4.5.7 熱重分析實驗流程------------------------------------------------------ 54
4.5.8 X光繞射分析------------------------------------------------------------ 54
五、 結果與討論--------------------------------------------------------------- 55
5.1 傅立葉紅外線光譜分析------------------------------------------------ 55
5.2 薄膜熱重量損失分析--------------------------------------------------- 57
5.3 結晶性分析--------------------------------------------------------------- 59
5.4 薄膜表面型態分析------------------------------------------------------ 60
5.5 幾丁聚醣薄膜之磺化程度分析--------------------------------------- 65
5.6 拉伸測試------------------------------------------------------------------ 71
5.7 飽和含水率--------------------------------------------------------------- 74
5.8 薄膜之質子傳導率------------------------------------------------------ 76
鈉型磺酸根薄膜質子傳導率------------------------------------------ 76
氫型磺酸根薄膜質子傳導率------------------------------------------ 80
5.9 薄膜之甲醇滲透率------------------------------------------------------ 83
5.10 薄膜選擇率分析--------------------------------------------------------- 87
六、 結論------------------------------------------------------------------------ 89
參考文獻 ------------------------------------------------------------------------------ 90
[1] 張漢宜,2002,有機/無機混成質子交換膜之製備及其應用於燃料電池之特
性分析,國立雲林科技大學工業化學與災害防治研究所碩士論文。

[2] 黃育楓,2006,製備聚乙烯半互穿網材料做為燃料電池質子傳導膜應用之
研究,國立雲林科技大學化學工程研究所碩士論文。

[3] 鄭耀宗,1999,“燃料電池技術進展的現況分析”,節約能源論文發表會論
文專輯, 409~422。

[4] Muzzarell, R.A.A. ; Barontini, G. ; Rocchett, R. , 1987 ,“Isloation of lysozyme on chitosan”, Biotechnology and bioengineering , 29.

[5] Lee, V. F., 1974, Solution and shear properties of chitin and chitosan, Ph.D. Dissertation, University of Washington, University Microfilms, Ann Arbor, MI, USA, Microfilm 74-29, p. 446.

[6] Aiba, S. , 1992 , Int. J. Biol. Macromol. 14 , 225-228.

[7] Rinaudo, M.; Milas, M.; P. Le Dung Int. J. Biol. Macromol. 15 (1993)281-285.

[8] Roberts, G. A. F. 1992. In: Chitin Chemistry. The Macmillan press Lth,Hong Kong.

[9] Chatelet, C.; Damour, O. ; Domard, A. , 2001, Biomaterials , 22 , 261.

[10] Muzzarelli, R. A. A.; Rocchetti, R. , 1985 , Carbohydr. Polym. , 5 , 461-472.

[11] Hackman, R. H. , 1965, Aust. J. Biol. Sci. 18 , 935-938.

[12] Austin-PR, U.S. Patent 4059457, 1977.

[13]Kurita, K., 2001, “Controlled functionalization of the polysaccharide chitin”, prog. polym. sci., 26, 1921.

[14] Hirano, S.; Ohe, Y., 1975, Agric Biol Chem, 39, 1337.

[15]Mukoma, P. ; Jooste, B.R. ; Vosloo, H.C.M. , 2004, A comparison of methanol permeability in Chitosan and Nafion 117membranes at high to medium methanol concentrations, Journal of Membrane Science, 243, 293–299.

[16] Mukoma, P. et al, 2004 , Synthesis and characterization of cross-linked chitosan membranes for application as alternative proton exchange membrane materials in fuel cells, Journal of Power Sources, 136, 16–23

[17] Skoog, D. A.; Holler, F. J. and Nieman, T. A., 1998, Principles of Instrumental Analysis, Fifth Edition.

[18] 羅聖全,2004,“研發奈米科技的基本工具之一電子顯微鏡介紹–SEM”,小奈米大世界。

[19] 蔡英文,1999,同步輻射X光吸收光譜在鋰電池材料之應用,台灣科技大學
化學工程研究所碩士論文。

[20] Smitha, B.; Sridhar, S.;Khan, A. A. , 2005 , “Solid Polymer electrolyte membranes for fuel cell applications- a review ”, Journal of Membrane, 259,10-26

[21] Hickner, M.A., and Pivovar, B. S., 2005,“The Chemical and Structure Nature of Proton Exchange Membrane Fuel Cell Properties”, Fuel cells , 5, 213-229.

[22] Neto et al. (2005) “Thermal Analysis of Chitosan Based Networks” , Carbohydrate Polymers , 98 , 62, 97–103.
[23] 李育德,顏文義,莊祖煌,2005,聚合物物性,高立圖書有限公司發行。

[24] Riccardo A.A. Muzzarelli, 1992,“Modified chitosans carrying sulfonic acid”,
Carbohydrate Polymers 19, 231-236.

[25] Mansoor M. Amiji, 1998,“Platelet adhesion and activation on an amphoteric chitosan derivative bearing sulfonate groups”, Colloids and Surfaces B: Biointerface, 10, 263-271.

[26] Ernesto Lo′pez-Cha′vez et al. , 2005,“Molecular modeling and simulation of ion-conductivity in chitosan membranes”, Polymer ,46 ,7519–7527.

[27] Kim, D. S.; Park, H. B.; Rhim, J. W. ; Lee, Y. M. , 2004, “Preparation and characterization of crosslinked PVA/SiO2 hybrid membranes containing sulfonic acid groups for direct methanol fuel cell applications”, Journal of Membrane Science, 240, 37-48.

[28] Kim,Y. S. ; Hickner, M. A.;Dong, L.; Pivovar, B. S.; McGrath, J. E., 2004 ,“ Sulfonated poly(arylene ether sulfone) copolymer proton exchange membranes: composition and morphology effects on the methanol permeability”, Journal of Membrane Science, 243, 317-326.

[29] Smitha, B. ; Sridhar, S.; Khan, A.A., 2004, “Polyelectrolyte complexes of chitosan and poly(acrylic acid) as proton exchange membranes for fuel cells”, Macromolecules, 37, 2233-2239.

[30] Hickner, M. A., 2003 , “Transport and Structure in Fuel Cell Proton Exchange Membranes”, Virginia Polytechnic Institute and State University in partial fulfillment, Ph.D. Thesis.

[31] Swier, S. ; Ramani, V. ; Fenton, J. M. ; Kunz, H. R.; Shaw, M. T. ; Weiss, R. A. , 2005, “Polymer blends based on sulfonated poly(ether ketone ketone) and poly(ether sulfone) as proton exchange membranes for fuel cells”, Journal of Membrane Science, 256, 122-133.

[32] 李俊賢,2003,The Preparation and Properties of Polymer Electrolytes Based on Sulfonated Cyclotriphosphazene Polymer,中原大學化學系碩士論文。

[33] Hogarth, M. ; Glipa, X. , 2001, “High Temperature Membranes For Solid Polymer Fuel Cells”, Johnson Matthey Technology Centre.

[34]Kreuer, K. D., 2000 , “On the complexity of proton conduction phenomena”, Solid State Ionics, 136–137, 149–160.

[35] Samuels, R.J. ,1981, “Solid State Characterization of the Structure of Chitosan
Films”, Journal of Polymer, Sci-Phy, 19, 1081.

[36] Vieira, R. S. and Beppu, M. M., 2006, “Interaction of natural and Crosslinked
chitosan membranes with Hg(II) ions ”, Colloids Surf. A,279.

[37] Qu, X.,Wirsen, A.,Albertsson, A.-C., 2000, ” Novel pH-sensitive chitosan hydrogels
swelling behavior and states of water ” , Journal of Polymer. 41, 4589.

[38] 林睿毅,含矽之幾丁聚醣和聚乙烯酸之聚電解質複合物用於甲醇
燃料電池質子交換膜之探討,國立成功大學化學工程研究所碩士論文。

[39] Preeyanat Vongchan et al., 2002, “Anticoagulant activity of a sulfated chitosan(note) ”, Carbohydrate Reacherch ,337 ,1239-1242.

[40] B. Smitha, S. Sridhar, A.A. Khan, 2006,”Chitosan-poly(vinyl pyrrolidone) blends as membranes for direct methanol fuel cell applications” , Journal of Polymer. 159, 846-854.

[41] Yong-Jin Choi, Yeonghee Ahn, Moon-Sung Kang, Hong-Ki Jun, In Soo Kim and
Seung-Hyeon Moon, 2004,” Preparation and characterization of acrylic acid-treated
bacterial cellulose cation-exchange membrane”, 79, 79-84.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔