(18.232.50.137) 您好!臺灣時間:2021/05/07 03:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:邱懷萱
研究生(外文):Huai-Shuan Chiu
論文名稱:光纖脈衝雷射放大器系統中泵浦光源引致不穩定現象與抑制方法
論文名稱(外文):Pump induced instability and suppression of pulsed fiber laser amplifier system
指導教授:李晉東黃建盛黃建盛引用關係
指導教授(外文):Tsin-Dong LeeChien-Sheng Huang
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:光學電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:54
中文關鍵詞:光纖雷射摻鐿光纖雷射自發脈衝
外文關鍵詞:Ytterbium Doped Fiber LaserFiber LaerSelf Pulse
相關次數:
  • 被引用被引用:0
  • 點閱點閱:255
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  近年來,稀土族光纖雷射在連續輸出模式時,自發脈衝(Self pulse)現象已經被廣泛的探討,其原因與泵浦功率、增益光纖長度、共振腔反射率、溫度等因素有關。而在光纖脈衝雷射放大器系統(Fiber laser amplifier system)中,自發脈衝的抑制仍然是一個重要的課題,除了因為會降低放大器性能,特別是由於沒有方向性的特性可能產生巨脈衝沿著反向雷射訊號方向。最後,可能損壞元件像是雷射二極體(Laser diode, LD)、隔離器(Isolator)甚至是光結合器(Combiner)。
  在本研究中,我們使用一個無共振腔的光纖雷射放大器系統,在無雷射訊號情形下測試泵浦能量與配置方式對於自發輻射放大(Amplified spontaneous emission, ASE)穩定度的影響,用以評估脈衝雷射放大器產生自發脈衝之門檻值(Threshold)。實驗結果顯示使用纖核直徑為6um、光纖長度4m的摻鐿光纖放大器系統,單向泵浦配置在輸入約2W時,開始產生不穩定現象,然而雙向泵浦配置可以提高其門檻值至2.3W。且在兩種泵浦配置下,當增益光纖長度愈短,其產生自發脈衝的門檻值會提高。本實驗結果對估計光纖放大器的性能和極限有很大的幫助。
  In recent years, Self pulse phenomenon has been widely studied in rare earth doped CW fiber laser system. It can be affected by pump power, length of gain fiber, cavity, and temperature. However, it remained an important subject for the suppression of self pulse in pulsed fiber laser amplifier system. Especially due to the directionless property which could generate a giant pulse which along reverse laser signal direction. Eventually, it might damage the devices such as laser diode, isolator, and even combiner.
  In this paper, a fiber laser amplifier with different pump configuration and no laser signal input has been used to evaluate ASE instability threshold. Experiment presents that the output ASE power instability can be observed in a fiber laser amplifier system with core diameter 6 um and length of 4 meter Ytterbium doped fiber while a 2W pump power is launched in forward pumping. However, bi-directional pumping configuration can increase instability threshold to 2.3W. In the two kind configurations of the pump, when the length of the gain fiber is shorter, producing the threshold of the self pulse will be increased. The result of our experiment can be useful to evaluate fiber base amplifier performance and limitation.
中文摘要........................................................................................................i
英文摘要.......................................................................................................ii
誌 謝............................................................................................................iii
目 錄............................................................................................................iv
表 目 錄......................................................................................................vi
圖 目 錄.....................................................................................................vii
第一章 緒論.................................................................................................1
    1.1 研究背景..................................................................................1
    1.2 研究動機..................................................................................6
    1.3 論文架構..................................................................................6
第二章 光纖雷射放大器介紹.....................................................................7
    2.1 摻鐿增益介質..........................................................................7
    2.2 光纖雷射概述.........................................................................10
    2.3 光纖雷射放大器.....................................................................15
      2.3.1 光纖放大器之速率及傳播方程式..............................16
      2.3.2 光雜訊與雜訊指數(noise figure, NF)..........................20
第三章 實驗架構........................................................................................22
    3.1 實驗架構.................................................................................22
    3.2 相關元件介紹.........................................................................25
      3.2.1 雷射二極體..................................................................25
      3.2.2 雙包層增益光纖..........................................................26
      3.2.3 光結合器......................................................................27
第四章 結果與討論....................................................................................28
第五章 結論................................................................................................38
參考文獻......................................................................................................39
[1] C.-J. Weng, W.-Y. Hsu, J.-R. Sze, and S.-L. Huang, Review of high power fiber lasers and related technologies, Instrum. Today, 28 (6), pp. 13-23 (2007)
[2] See the IPG Photonics website http://www.ipgphotonics.com/
[3] A. Galvanauskas, M.-Y. Cheng, K.-C. Hou, and K.-H. Liao, High peak power pulse amplification in large-core Yb-doped fiber amplifiers, IEEE J. Sel. Topics Quantum Electron. 13(3), pp. 559-566 (2007).
[4] F. R�宄er, D. Schimpf, O. Schmidt, B. Orta��, K. Rademaker, J. Limpert, and A. T�刡nermann, 90 W average power 100 μJ energy femtosecond fiber chirped-pulse amplification system, Opt. Lett. 32, 2230-2232 (2007)
[5] O. Schmidt, J. Rothhardt, F. R�宄er, S. Linke, T. Schreiber, K. Rademaker, J. Limpert, S. Ermeneux, P. Yvernault, F. Salin, and A. T�刡nermann, Millijoule pulse energy Q-switched short-length fiber laser, Opt. Lett. 32, 1551-1553 (2007)
[6] Thomas H. Loftus, Anping Liu, Paul R. Hoffman, Alison M. Thomas, Marc Norsen, Rob Royse, and Eric Honea, 522 W average power, spectrally beam-combined fiber laser with near-diffraction-limited beam quality, Opt. Lett. 32, 349-351 (2007)
[7] C. J. Weng et al., Review of high power fiber lasers and related technologies, Instrum. Today 28 (6), pp. 13-23 (2007).
[8] Charles J. Koester and Elias Snitzer, Amplification in a Fiber Laser, Appl. Opt. 3, 1182-1186 (1964)
[9] J. Stone and C.A. Burrus, Neodymium-doped silica lasers in end-pumped fiber geometry, Appl. Phys. Lett., 23 (7), pp. 388-389 (1973).
[10] R. J. Mears et al., Low-noise erbium-doped fibre amplifier operating at 1.54 μm, Electron. Lett., 23 (19), pp. 1026-1028 (1987).
[11] R. Maurer, Optical waveguide light source, U.S. Patent 3808549, Apr. 30, 1974.
[12] H. Zellmer, U. Willamowski, A. T�刡nermann, H. Welling, S. Unger, V. Reichel, H.-R. M�刜ler, J. Kirchhof, and P. Albers, High-power cw neodymium-doped fiber laser operating at 9.2 W with high beam quality, Opt. Lett. 20, 578-580 (1995)
[13] T�刡nermann et al., New concepts for diode-pumped solid state lasers, High-Power Diode Lasers: Fundamentals, Technology, Applications, Topics in Applied Physics vol. 78 (2004), ed R. Diehl (Heidelberg: Springer).
[14] S. Tammela et al., The potential of direct nanoparticle deposition for the next generation of optical fibers, Proc. SPIE 6116, 61160G (2006).
[15] G. P. Lees et al., Q-switched erbium doped fibre laser utilising a novel large mode area fibre, Electron. Lett. 33 (5), pp. 393-394 (1997).
[16] J. C. Knight, Photonic crystal fibers, Nature 424 (6950), pp. 847-851 (2003).
[17] Y. Jeong et al., Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power, Opt. Express, 12 (25), pp. 6088-6092 (2004).
[18] D. Gapontsev, IPG Photonics, 6 kW CW single mode ytterbium fiber laser in all-fiber format, in Solid State and Diode Laser Technology Review (Albuquerque, 2008).
[19] See the IPG Photonics website http://www.ipgphotonics.com/
[20] G. Mitchard and R. Waarts, Double-clad fibers enable lasers to handle high power, Laser Focus World 35 (1), pp. 113-115 (1999).
[21] S. Ramachandran, J. W. Nicholson, S. Ghalmi, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, Light propagation with ultralarge modal areas in optical fibers, Opt. Lett. 31 (12), pp. 1797-1799 (2006).
[22] Galvanauskas et al., Effectively single-mode large core passive and active fibers with chirally coupled-core structures, in CLEO/QELS, OSA Technical Digest, paper CMB1 (2008).
[23] M. Hildebrandt et al., Narrow-linewidth ytterbium-doped fiber amplifier system with 45 nm tuning range and 133 W of output power, Opt. Lett. 32 (16), pp. 2345-2347 (2007).
[24] Galvanauskas et al., High peak power pulse mplification in large-core Yb-doped fiber amplifiers, IEEE J. Sel. Topics Quantum Electron. 13 (3), pp. 559-566 (2007).
[25] C. Labaune et al., On the feasibility of a fiber-based inertial fusion laser driver, Opt. Commun. 281 (15-16), pp. 4075-4080 (2008).
[26] M. A. Mahdi and H. Ahmad, Gain Enhanced L-Band Er3+-Doped Fiber Amplifier Utilizing Unwanted Backward ASE, IEEE Photonics Technology Letters, vol. 13, pp. 1067–1069, 2001.
[27] A. Bouchier, G. Lucas-Leclin, P. Georges, and J. Maillard, Frequency doubling of an efficient continuous wave single-mode Yb-doped fiber laser at 978 nm in a periodically-poled MgO:LiNbO3 waveguide, Opt. Express 13, 6974-6979 (2005)
[28] D. B. S. Soh et al., A 980-nm Yb-doped fiber MOPA source and its frequency doubling, IEEE Photonics Technol. Lett. 16 (4), pp. 1032-1034 (2004).
[29] J. A. Alvarez-Chavez, A. Mart´ınez-Rios, I. Torres-Gomez, and H. L. Offerhaus, Wide wavelength-tuning of a double-clad Yb3+-doped fiber laser based on a fiber Bragg grating array, Laser Phys. Lett. 4 (1), pp. 1–4 (2007).
[30] Paul Urquhart, Review of rare earth doped fibre lasers and amplifier, Optoelectronics,IEEE Proc. J 135 (6), pp. 385-407 (1988).
[31] Stuart D. Jackson, Midinfrared holmium fiber lasers, IEEE J. Quantum Electron. 42 (2), pp. 187-191 (2006).
[32] D. V. Talavera and E. B. Mejia, Holmium-doped fluoride fiber laser at 2950 nm pumped at 1175 nm, Laser Phys. 16 (3), pp. 436–440 (2006).
[33] S. K. Sim et al., High-power cascaded Raman fibre laser using phosphosilicate fibre, Electron. Lett. 40 (12), pp. 738-739 (2004).
[34] Supriyo Sinha, Karel E. Urbanek, David S. Hum, Michel J. F. Digonnet, Martin M. Fejer, and Robert L. Byer, Linearly polarized, 3.35 W narrow-linewidth, 1150 nm fiber master oscillator power amplifier for frequency doubling to the yellow, Opt. Lett. 32, 1530-1532 (2007)
[35] A. B. Rulkov, A. A. Ferin, S. V. Popov, J. R. Taylor, I. Razdobreev, L. Bigot, and G. Bouwmans, Narrow-line, 1178nm CW bismuth-doped fiber laser with 6.4W output for direct frequency doubling, Opt. Express 15, 5473-5476 (2007)
[36] E. C. Honea, M. Savage-Leuchs, P. Jones, and C. Dilley, Green and UV frequency conversion of a variable pulse repetition frequency photonic crystal fiber system, Proc. of SPIE 6873, pp. 68731W (2008).
[37] H. M. Pask, Ytterbium-doped silica fiber lasers: versatile source for the 1-1.2 μm region, IEEE J. Sel. Topics Quantum Electron. 1 (1), pp. 2-13 (1995).
[38] J.C. Compbell, B.C. Johnson, G.J. Qua, and W.T. Tsang, Frequency Response of InP/InGaAsP/InGaAs Avalanche Photodiodes, J. Lightwave Technology, Vo1.7, No.5 May 1989, pp. 778-784
[39] H. Imai, T. Kaneda, High-Speed Distributed Feedback Lasers and InGaAs Avalanche Photodoides, J. Lightwave Technology, Vo1.6, No.11, Nov. 1988, pp.1634-1642
[40] Koser, J. Light-sensitive systems, Chap.2 pp.46, John Wiley and Sons, New York (1965).
[41] Rallison, R. Lasers and InGaAs Avalanche Photodoides, Lasers & Applications Dec. 1984, pp.61.
[42] 丁勝懋, 1986, 雷射工程導論, 第二版, 中央圖書出版社
[43] 陳錫��, 1985, 光學,近代物理, 中央圖書出版社
[44] J. Aspell, J. F. Federici, B. M. Nyman, D. L. Wilson, and D. S. Shenk, Accurate noise figure measurements of erbium-doped fiber amplifiers in saturation conditions, in Digest of Conference on Optical Fiber Communication, Vol. 5 of 1992 OSA Technical Digest Series (Optical Society of America, 1992), paper ThA4.
[45] 黃宇志, 多段式長波段�眊z光纖放大器之研究, 碩士論文, 國立高雄應用科技大學, 2008
[46] 鄭建源, 長波段�眊z光纖放大器之前置放大器設計, 碩士論文, 國立清華大學, 2007
[47] M. A. Mahdi and H. Ahmad, Gain enhanced L-band Erbium doped fiber amplifier utilizing unwanted backward ASE, IEEE Photonics Technology Letters, vol. 13, pp. 1067–1069, 2001.
[48] J. F. Massicott, R. Wyatt, and B. J. Ainslie, Low noise operation of Er3+ doped silica fiber amplifier around 1.6μm, Electron. Lett., vol. 28, pp. 1924-1925, 1992.
[49] H. Ono, M. Yamada, T. Kanamori, S. Sudo, and Y. Ohishi, 1.58μm band Er3+ doped fiber amplifier pump in the 0.98 and 1.48μm bands, Electron. Lett. vol. 33, no. 10, pp. 876-877, 1997.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔