(3.238.96.184) 您好!臺灣時間:2021/05/12 15:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:許正忠
研究生(外文):Cheng-Chung Hsu
論文名稱:以超薄高介電材質HfSiON為閘極介電層之研究
論文名稱(外文):An Investigation on the Properties of High-K Ultra-thin HfSiON Films as Gate Dielectric
指導教授:陳世志陳世志引用關係
指導教授(外文):Shih-Chih Chen
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:光學電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:89
中文關鍵詞:阻擋層HfSiON氧化鉿射頻磁控濺鍍法
外文關鍵詞:RF sputteringHfanium oxideHfSiONBarrier layer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:84
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著半導體製造技術進入到奈米世代,以高介電材質取代傳統SiO2閘極氧化層已是當前之趨勢。本研究是以P-Si(100)為基材,利用射頻磁控濺鍍法成長60Å之HfSiON閘極介電層,並利用機台的re-sputtering功能,可於鍍膜前後對試片進行N2及O¬2 電漿處理,以改善HfSiON薄膜之品質。

於成長HfSiON薄膜之前先以N2 電漿 3分鐘處理後,以不同溫度的熱氧退火,得到最佳的退火溫度750℃。接著以950℃不同時間的高溫熱氮處理,來評估薄膜於高溫中的熱穩定性,以60秒之條件為最佳。而薄膜成長前以不同時間的N2 電漿及N2+O2 電漿處理之比較,後者之試片經長時間高溫後C-V曲線特性較佳,而前者則有較高之最大電容值。至於薄膜成長後不同時間的O2 電漿處理對整體電性的影響,以事後O2 電漿處理1分鐘最佳,不僅電容值提昇且漏電流部分也明顯改善。

實驗結果證實Si3N4阻擋層確實有效的阻止薄膜中的氧原子與Si基板間發生相互擴散的情形,而O2 電漿處理可以使薄膜中的氧空缺(Oxygen Vacancy)能夠更充分的被填補,使得HfSiON高介電薄膜介電特性變佳,亦能降低漏電流。
The semiconductor fabrication technologies have been developed into nero-scale generation. It is a trade that high-k material will be used to replace the traditional SiO2 as gate oxide. In this study, the RF magnetron controlled sputtering system was applied to deposit 60Å–thick HfSiON thin film on p-type Si-(100) substrate. The sputter system has the re-sputtering function. Before and after the HfSiON film grown, the N2 and O2 plasma treatments were applied to improve the quality of HfSiON film.

Before the HfSiON thin film growth, the bare Si substrate was treated by the N2 plasma or N2+O2 plasma for 3 minutes to form a SiN or SiNO barrier layer. During the deposition, a proper consistent of Ar, O2 and N2 were added into the chamber to grow the HfSiON thin film. An post O2 plasma treatment was applied the deposited film for 1 minute to reduce oxygen vacancy density. A two-step post deposition annealing was used to the deposited film. The optimum first-step furnace oxygen annealing temperature is 750℃ for 3 min. And the HfSiON shows dielectric constant of 8.94. For studying thermal stability of HfSiON thin film, the next-step of furnace nitrogen annealing was applied at 950℃ with different durations. It showed that the optimum duration of the next-step is 60 seconds. If the duration is high temperature duration is grater than 60 sec the film would degrade. The dielectric constant of HfSiON thin film was obtained about 11.0. And the leakage current densities at positively and negatively biased voltages of 1.5V are 2.5�e10−5 and 1.42�e10−3 A/cm2 respectively.
第一章 序論 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 1
1-1 研究目的與動機 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 1
1-1-1 MOS 製程技術之發展 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 1
1-1-2 DRAM之發展 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3
1-2 研究方法 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5
1-3 論文架構 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6

第二章 基本理論及文獻回顧 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 8
2-1 基本理論 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 8
2-1-1 電容 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 8
2-1-2 頻率效應 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 8
2-1-3 介電損失 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 9
2-1-4 磁控濺鍍 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 9
2-1-5 退火 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10
2-1-6 界面電荷效應 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10
2-1-7 表面缺陷密度 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10
2-2 文獻回顧 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 11
2-2-1 基板加溫成長 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯11
2-2-2 O2 Plasma Annealing ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯11

第三章 實驗步驟 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯15
3-1 實驗步驟簡介 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯15
3-1-1 成長薄膜前的化學清洗 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯15
3-1-2 於Si基板與高介電薄膜間成長一層阻擋層 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 15
3-1-3 成長高介電薄膜 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯15
3-1-4 熱退火處理 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯15
3-1-5 成長上電極 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯16
3-2 電性量測 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 16
3-2-1 I-V量測 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 16
3-2-2 C-V量測 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 17
3-3 物性量測 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 17
3-3-1 AFM ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 17
3-3-2 XRD ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 17
3-2-4 SEM ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 18

第四章 結果與討論 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯21
4-1 不同熱氧處理溫度對薄膜電性之影響⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 21
4-1-1 I -V 特性⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯21
4-1-2 C-V 特性⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯22
4-2 NP3-FO750試片之熱穩定度探討 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯25
4-2-1 I -V 特性⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯25
4-2-2 C-V 特性⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯26
4-2-3 AFM 分析⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 26
4-3 事前氮氧電漿處理對薄膜電性之影響 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 30
4-3-1 I -V 特性⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯30
4-3-2 C-V 特性⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯31
4-3-3 AFM 分析⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 31
4- 4 事後氧電漿處理對薄膜電性之影響 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 35
4-4-1 I-V特性⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 35
4-4-2 C-V特性⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 35
4-4-3 SEM 分析 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 36
4-4-4 AFM 分析 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 36
4-4-5 XRD 分析 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 37
4-5 NP3-PO1-FO750及NP2NOP1-PO1-FO750試片之熱穩定度探討 ⋯⋯⋯⋯⋯⋯ 45
4-5-1 I-V特性⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 45
4-5-2 C-V特性⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 45
4-5-3 SEM 分析 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 46
4-5-4 AFM 分析 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 46
4-5-5 XRD 分析 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 46

第五章 漏電流機制分析 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 54
5-1 漏電流機制簡介 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 54
5-1-1 蕭基發射(Schocttky Emission) ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 54
5-1-2 普爾-法蘭克(Pool-Frenkel)效應 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 56
5-1-3 直接穿隧(Direct Tunneling)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 57
5-1-4 F-N 穿隧(Fowler-Nordheim Tunneling) ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 58
5-2 實驗結果分析 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 61

第六章 結論與未來研究方向 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 69
6-1 結論 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 69
6-2 未來研究方向 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 69

參考文獻 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 71
[1]Gordon E. Moore, “Moore''s Law ”,
http://www.intel.com/technology/mooreslaw/index.htm
[2]T.Aoyama and S.Saida, ”Leakage Current Mechanism of Amorphous and
Polycrystalline Ta2O5 Films Grown by Chemical Vapor Deposition”, J.
Electrochem. Soc., Volume 143, No.3 March 1996, p.977-p.983
[3]W. S. Lau, M. T. Chandirna , A. K. OW, T. Han, C.H. Tung, T. T. Sheng and P.
K. Chu,“The Superiority of N2O Plasma Annealing over O2 Plasma Annealing
for Amorphous Tantalum Pentoxide (Ta2O5) Films”, Jpn. J. Appl. Phys. Vol.37
(1998), pp. L435-L437.
[4]R.H.Dennard, "Field effect transistor memory," U. S. Patent 3, 387,286,
granted June 4, 1968.
[5]S.Ezhilvalavan, Tseung-Yuen Tseng,“Progress in the developments of (Ba,Sr)
TiO3 (BST) thin dilm for Gigabit era DRAMs”, Materials Chemistry and
Physics, 65 (2000), pp 227-248.
[6]張義昭, “動態隨機存取記憶體製程技術的趨勢”,電子月刊第二卷第九期, p.56-p.67
[7]Laureen H. Parker and Al F.Tasch ,“Ferroelectric materials for 64 Mb and
256 Mb DRAMs”,IEEE Circuits and Device Magazine,1990, p.17-p.26
[8]M.Yanagisawa, K.Nakamura, and M.Kikuchi,”Trench transistor cell with
selfaligned contact for megabit MOS DRAM”,in IEDM Tech.Dig,1986,P13.
[9]M.Koyanagi, H.Sunami, N.Hashimoto,and M.Ashikawa,”Novel high density
stacked capacitor MOS RAM,” in IEDM Tech.Dig,1978,P348.
[10]R. H. Dennard, "Field effect transistor memory," U. S. Patent 3, 387,286,
granted June 4, 1968.
[11]Y.Takemae, T.Ema, M.Nakano, F.baba, T.Yabu, K.Miyasaka, and K.Shirai,”A
1Mb DRAM with 3-dimensional stacked capacitor cells,”in ISSCC Dig.Papers,
1985, p.250.
[12]Cheol Seong Hwang, Soon Oh Park, Hag-Ju Cho, Chang Suk Kang, Ho-Kyu Kang,
Sang In Lee,and Moon Yong Lee , “Deposition of extremely thin (Ba,Sr)TiO3
thin films for ultra-large-scale integrated dynamic random access memory
application", Appl. Phys. Lett. 67 (19), 6 November1995, p.2819-p.2821.
[13]Chich Shang Chang, Tai Bor Wu, Wong Cheng Shih and Lan Lin Chao,
“Dielectric and Electrical Characteristics of Titanium-Modified Ta2O5 Thin
Films Deposited on Nitrided Polysilicon by Metal-organic Chemical Vapor
Deposition"Jpn. J. Appl. Phys. Vol.38(1999) , p.6812-p.6816
[14]A. Cappellani 1, J.L. Keddie, N.P. Barradas and S.M. Jackson, “Processing
and characterisation of sol-gel deposited Ta2O5 and TiO2-Ta2O5 dielectric
thin films", Solid-State Electronics 43 (1999), p.1095-p.1099
[15]P.S.Dobal and R.S.Katiyar,“Micro-Raman scattering and x-ray diffraction
studies of(Ta2O5)x-(TiO2)1-x ceramics",J.Appl.Phys.,Vol 87, Number 12,
2000, p.8688 - p.8694
[16]R.J.Cava, W.F.Peck, J.J.Krajewski, G.L.Roberts, B.P.Barber, H.M.Bryan, and
P. L.Gammel, “Improvement of the dielectric properties of Ta2O5 through
substitution with Al2O3",Appl.Phys.Lett.70(11), 17 March 1997, p.1396-
p.1398
[17]P.C.Joshi, S.Stowell, and S.B.Desu,“Structural and electrical properties
of crystalline1-x(Ta2O5)-x(Al2O3) thin films fabricated by metal-organic
solution deposition technique",Appl. Phys. Lett. 71 (10), 8 September
1997, p.1341- p.1343
[18]Tae Song Kim, Myung Hwan Oh, Chong Hee Kim,“The thickness dependence of
(Ba0.5Sr0.5)TiO3 thin films deposited on indium tin oxide-coated glass
substrate using r.f. magnetron sputtering",Thin Solid Films 254(1995),
p.273-p.277
[19]Kenji Natori, Daijiro Otani,and Nobuyuki Sano,“Thickness dependence of the
effective dielectric constant in a thin film capacitor", Appl. Phys.
Lett., Vol 73,1998, p.632-p.634
[20]Stephen A. Campbell, David C. Gilmer, Xiao-chuan Wang, Ming-ta Hsieh, Hyeon-
Seag Kim, Wayne L. Gladfelter, and Jinhua Yan, “MOSFET Transistors
Fabricated with High Permitivity TiO2 Dielectric”, IEEE Transcations on
Electron Devices, VOL. 44, NO. 1, 1997, p.104-p.109.
[21]W.Bolton, "Engineering Materials Technology" , 3rd Edition,1998
[22]詹世雄,鄧德宏,鄭晃忠,“鐵電薄膜之沉積與應用",電子月刊第二卷第七 期,p.70-
p.72
[23]莊達人,"VLSI製造技術",高立圖書,1995
[24]A. Pignolet, G. Mohan Rao and S.B. Krupanidhi, "Rapid thermal processed
thin films of reactively sputtered Ta2O5 ", Thin Solid Films 258 (1995)
p.230-p.235.
[25]Stephen A.Campbell, David C.Gilmer, Xiao-chuan Wang, Ming-ta Hsieh, Hyeon-
Seag Kim, Wayne L.Gladfelter, and Jinhua Yan, “MOSFET Transistors
Fabricated with High Permitivity TiO2 Dielectric", IEEE Transcations on
Electron Devices, VOL. 44, NO. 1, 1997, p.104-p.109
[26]R.Nieh, R.Choi, S.Gopalan, K.Onishi, C.S.Kang, H.J.Cho, S.Krishnan and
J.C.Lee, “Evaluation of silicon surface nitridation effects on ultra-thin
ZrO2 gate dielectrics”, Appl. Phys.Lett. 81,1663(2002)
[27]H.Ishii, A.Nakajima and S.Yokoyama, “Growth and electrical properties of
atomic-layer deposited ZrO2/Si-nitride stack gate dielectric”,
J.Appl.Phys.95,536(2004)
[28]P.D.Kirsch, C.S.Kang, J.Lozano, J.C.Lee and J.G.Ekerdt,”Electrical and
spectroscopic comparision of HfO2/Si interfaces on nitrided and un-nitrided
Si(100)”,J.Appl.Phys. 91,4353(2002)
[29]Byoung Hun Lee, Laegu Kang, Wen-Jie Qi, Renee Nieh, Yongjoo Jeon, Katsunori
Onishi and Jack C.Lee, ”Ultrathin hafnium oxide with low leakage and
excellent reliability for alternative gate dielectric application”,
Electron Devices Meeting, 1999. IEDM Technical Digest. International 5-8
Dec. 1999 Page(s):133 - 136
[30]Ferrari, S.; Scarel, G ,“Oxygen diffusion in atomic layer deposited ZrO2
and HfO2 thin films on Si (100)”, Journal of Applied Physics ,Volume 96,
Issue 1, Jul 2004 Page(s):144 - 149
[31]Alers, G. B.; Fleming, R. M.; Wong, Y. H.; Dennis, B.; Pinczuk, A.;
Redinbo, G.; Urdahl, R.; Ong, E.; Hasan, Z.,” Nitrogen plasma annealing f
for low temperature Ta2O5 films”, Applied Physics Letters,Volume 72, Issue
11, Mar 1998 Page(s):1308 - 1310
[32]Donald A Neamen “Semiconductor Physics and Device, Basic Principle”,
Irwin, ,1992
[33]Haruhiko Ono,Yumiko Hosokawa,Taeko Ikarashi,Keisuke Shinoda and Nobuyuki
Ikarashi,”Formation mechanism of interfacial Si-oxide layers during
postannealing of Ta2O5/Si”, Journal of Applied Physics,volume 89,number
2,2001,p.995-p.1002
[34]Rajesh Katamreddy a,b, Ronald Inman a, Gregory Jursich a, Axel Soulet a,
Christos Takoudis b,c,〝Nitridation and oxynitridation of Si to control
interfacial reaction with HfO2〞Thin Solid Films (2008)
[35]汪建民, “材料分析”,中國材料科學學會, 1998
[36]Yung-Bin Lin and Joseph Ya-min Lee,”The temperature dependence of the
conduction current in Ba0.5Sr0.5TiO3 thin-film capacitors for memory device
applications", J. Appl. Phys. ,Vol. 87, Number 4 , 2000, p.1841-p.1843
[37]Jae-Hyun Joo, Jeong-Min Seon, Yoo-Chan Jeon, Ki-Young Oh, Jae-Sung Roh a
and Jae-Jeong Kim, “Improvement of leakage currents of Pt/(Ba, Sr)TiO3/Pt
capacitors", Appl. Phys. Lett. 70 (22), 2 June 1997, p.3053-p.3055
[38]Cheol Seong Hwang, Byoung Taek Lee, Chang Seok Kang, Ki Hoon Lee, Hag-Ju
Cho, Horii Hideki, Wan Don Kim, Sang In Lee, and Moon Yong Lee,
“Depletion layer thickness and Schottky type carrier injection at the
interface between Pt electrodes and (Ba,Sr)TiO3 thin films",
J.Appl.Phys.,Vol.85, Number 1 ,1999, p.287-p.295
[39]P.C.Joshi and M.W.Cole, “Influence of post-deposition annealing on the
enhanced structural and electrical properties of amorphous and crystalline
Ta2O5 thin films for dynamic random access memory applications",Journal
of Applied Physics ,1999, Volume 86, Issue 2, p.871-p.880
[40]H.Sawada and K.Kawakami, “Electronic structure of oxygen vacancy in Ta2O5"
J. Appl. Phys. ,Vol. 86, Number 2 ,1999, p.956-p.959
[41]Fu-Chien Chiu, Jenn-Jyh Wang, Joseph Ya-min Lee and Shich Chuan Wu,
“Leakage currents in amorphous Ta2O5 thin films", J. Appl. Phys. 81 (10),
15 May 1997, p.6911-p.6914
[42]C.Chaneliere and J.L.Autran,"Conduction mechanisms in Ta2O5/ SiO2 and
Ta2O5/Si3N4 stacked structures on Si",J.Appl.Phys. ,Vol 86,1999, p.480-
p.486.
[43]S.Ezhilvalavan and Tseung-Yuen Tseng,"Conduction mechanisms in amorphous
and crystalline Ta2O5 thin films", J. Appl. Phys. ,Vol 83, Number 9 ,1998,
p.4797-p.4801
[44]C.Chaneliere, S.Four, J.L.Autran, R.A.B.Devine and N.P.Sandler,
“Properties of amorphous and crystalline Ta2O5 thin films deposited on Si
from a Ta(OC2H5)5 precursor", J. Appl. Phys. ,Vol 83, Number 9 ,1998,
p.4823-p.4828
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔