(3.236.122.9) 您好!臺灣時間:2021/05/14 06:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃茂展
研究生(外文):Mao-chan Huang
論文名稱:超薄高介電HfSiO閘極介電層之研製
論文名稱(外文):An Investigation on the Properties of High-k Ultra-Thin HfSiO Film as Gate Dielectric
指導教授:陳世志陳世志引用關係
指導教授(外文):Shih-Chih Chen
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:光學電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:119
中文關鍵詞:N2 plasmaO2 plasmaHfSiO射頻磁控濺鍍法
外文關鍵詞:HfSiOO2 plasmaN2 plasmaRF magnetron controlled sputtering
相關次數:
  • 被引用被引用:0
  • 點閱點閱:211
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究是以射頻磁控濺鍍法製備Al╱HfSiO╱Si3N4╱p-Si(100)的MOS結構,HfSiO厚度約為60Å,在薄膜成長之前以N2 plasma對Si基板做氮化處理成長Si3N4阻擋層來防止HfSiO與Si基板間相互擴散。成長HfSiO高介電薄膜後,利用事後O2 plasma處理填補高介電薄膜中的氧空缺,在施以事後N2 plasma處理可有效降低漏電流密度,以得到高介電薄膜的最佳成長條件。偏壓在1.5V時漏電流密度為:8.50×10-9A/cm2;偏壓在-1.5V時漏電流密度為:1.31×10-5A/cm2,HfSiO之相對介電係數為:12.1。介面缺陷密度(Nit)為:1.4×1011cm-2,能階缺陷密度(Dit)為:1.84×1012eV-1cm-2。由此可知電漿處理可有效改善HfSiO薄膜之電特性。
根據XRD量測結果發現,HfSiO薄膜經950℃熱氮處理30秒及60秒時節晶並不明顯,950℃熱氮處理時間超過120秒時,晶相才越趨明顯,結晶溫度相較於HfO2有很大的提升。在AFM量測結果發現,對HfSiO薄膜施以適時之950℃熱氮處理可降低HfSiO薄膜表面粗糙度,改善HfSiO薄膜之物理特性。
In this study, Al/HfSiO/SiN/Si MOS structures have been fabricated by RF magnetron controlled sputtering technology. The thickness of HfSiO film is about 60Å. Before the HfSiO thin film was grown, the Si substrate was treated by the nitrogen plasma to form an ultra-thin SiN layer which was to be as a barrier layer to prevent inter-diffusion between HfSiO film and Si substrate. After the HfSiO layer was finished, the oxygen plasma treatment was applied on the film. This post O2 plasma treatment may effectively reduce the oxygen vacancy density. Finally, the post N2 plasma treatment was used to which might prevent the leakage current. On the optimum fabrication conditions, the MOS devices show that at positively and negatively biased-voltage of 1.5 V, the leakage current densities are 8.5×10−9 and 1.3×10−5 A/cm2, respectively. And the relatively dielectric constant of this HfSiO film is about 12.1. The interface trapped density and the interface trapped energy state density are estimated from the C-V characteristics about 1.4×1011/cm2 and 1.84×1012 /eV/cm2. The post N2 and O2 plasma treatments may improve the electrical properties of the HfSiO thin film.
Thermal stability of the grown HfSiO films was considered in this study. The post deposition annealing was applied to the processed HfSiO film in atmosphere nitrogen ambient at 950℃ for vary durations. It was found that the crystalline phase of the thermally processed HfSiO film for 60 seconds was not observed, until 120 seconds the crystalline phase was observed by the x-ray diffraction measurement.
第一章 序論 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1
1.1 研究目的與動機 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 1
1.2 研究方法 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯11
1.3 論文架構 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯13

第二章 基本理論及文獻回顧 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 17
2.1 高介電材料的選擇之要求 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 17
2.2 基本理論⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯20
2.2.1 MOS電容(MOS Capacitor) ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 20
2.2.1.1 理想電容-電壓(C-V)曲線 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯21
2.2.1.2 金屬-氧化層-半導體界面⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯23
2.2.2 頻率效應 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯26
2.2.3 介電損失 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯27
2.2.4 磁控濺鍍 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯28
2.2.5 退火 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯28
2.2.6 界面電荷效應 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯28
2.2.7 表面缺陷密度 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯29
2.3 文獻回顧 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 30
2.3.1 O2 Plasma Annealing⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯30
2.3.2 事前成長Si3N4阻障層之研究⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯31
2.3.3 將Si參雜入HfSiO高介電薄膜之研究⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯31

第三章 實驗步驟 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯40
3.1 實驗步驟簡介 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯40
3.1.1 成長薄膜前的化學清洗⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯40
3.1.2 成長薄膜前Si基板之處理⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯41
3.1.3 於Si基板與高介電薄膜間成長一層阻擋層 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 41
3.1.4 HfSiO高介電薄膜備製⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯42
3.1.5 熱氧化處理 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯42
3.1.6 事後電漿處理⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯42
3.1.7 熱退火處理⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯43
3.1.8 成長金屬電極⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯43
3.2 電性量測 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 44
3.2.1 I-V量測 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 44
3.2.2 C-V量測 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 45
3.3 物性量測 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 46
3.3.1 AFM ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 46
3.3.2 XRD ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 46
3.3.3 SEM ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 47

第四章 結果與討論 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯53
4.1 電性分析⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 53
4.1.1 事後氮電漿處理對薄膜電性之影響⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 53
4.1.1.1 I-V 特性 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯53
4.1.1.2 C-V 特性 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯54
4.1.2 事後氧電漿處理對薄膜電性之影響⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 55
4.1.2.1 I-V 特性 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯55
4.1.2.2 C-V 特性 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯56
4.1.3 事前氮電漿處理對薄膜電性之影響⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 57
4.1.3.1 I-V 特性 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯57
4.1.3.2 C-V 特性 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯57
4.1.4 熱氧處理溫度對薄膜電性之影響⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 58
4.1.4.1 I-V 特性 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯58
4.1.4.2 C-V 特性 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯58
4.1.5 針對NP3PO3PN3FO750熱穩定度之探討⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 59
4.1.4.1 I-V 特性 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯60
4.1.4.2 C-V 特性 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯60
4.2 物性分析⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯80
4.2.1 XRD 分析 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 80
4.2.2 AFM 分析 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 80
4.2.3 SEM分析 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯80

第五章 漏電流機制分析 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 94
5.1 漏電流機制簡介 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯94
5.2 實驗結果分析 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯102
第六章 結論與未來研究方向 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 110

6.1 結論 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯110
6.2 未來研究方向 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 112
參考文獻 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 113
[1]R. M. Wallace and G. D. Wilk, Exploring the limits of gate dielectric scaling, Semicond. Int. June, 153 (2001)
[2]International Technology Roadmap for Semiconductor
[3]Intel Developer Forum2005
[4]R. M. Wallace and G. D. Wilk, Exploring the limits of gate dielectric scaling, Semicond. Int. June, 153 (2001)
[5]D.A. Muller, T. Sorsch, S. Moccio, F. H. Baumann, K. Evans-Lutterodt, and G. Timp, The electronic structure at the atomic scale of ultrathin gate oxides, Nature 399, 758(1999)
[6]Katsunore Onishi,Chang Seok Kang,Rino Choi,Hag-Ju Cho,Sundar Goplan,Renee E.Nieh,Siddharth A.Krishnan,and Jack C.Lee,"Omprovement of surface carrier mobility of HfO2 MOSFETs by high-temperature forming gas annealing" IEEE transaction on electron device, vol. 50,no.2,pp384-390,2003
[7]Hong Yu Yu, Stident Member, IEEE, Ming-Fu Li, Senior Member, IEEE, and Dim-LeeKwong, Senior Member, “Thermally Robust HfN Metal as a Promising Gate Electrodefor Advanced MOS Device Applications" IEEE Transactions on Electron Devices, vol.51,no. 4, April 2004
[8]Wenjuan Zhu, Jin-Ping Han, Member, IEEE, and T. P. Ma, Fellow, IEEE, “Mobility Measurement and Degradation Mechanisms of MOSFETs Made With Ultrathin High-k Dielectrics" IEEE Transactions on Electron Devices, vol. 51,no. 1, JANUARY 2004
[9]Chang Seok Kang, Student Member, IEEE, Hag-Ju Cho, Rino Choi, Young-Hee Kim,Chang Yong Kang, Se Jong Rhee, Changhwan Choi, Strdent Member, IEEE, Mohammad Shahariar, and Jack C. Lee, Fellow, “The Electrical and Material Characterization of Hafnium Oxynitride Gate Dielectrics With TaN-Gate Electrode" IEEE Transactions on Electron Decices, vol. 51, no. 2,February 2004
[10]S. Tang, R. M. Wallace, A. Seabaugh, D. King-Smith, Ecaluating the minimum thickness of gate oxide on silicon using first-prnciples method, Appl. Sur. Sci. 135,137(1998)
[11]http://www.eettaiwan.com/ART_8800469665_480202_NT_3705294d.HTM
[12]G. E. Moore, IEDM Tech. Dig. , 12, 11 (1975).
[13]林明田,葉清發, “DRAM 記憶元之沿革與高介電薄膜之應用",電子月刊第一卷第四期, p.122-p.127.
[14]李雅明,吳世全,陳宏名, “鐵電記憶元件",電子月刊第二卷第九期, p.68-p.84
[15]吳世全“ 高介電材 料在記憶元件應用的最新發展 "電子月刊第四卷第七期,p.134-p.145
[16]Y. Ohji and Y. Matsui ,“Ta2O5 capacitors'' dielectric material for giga-bit DRAMs", IEEE, IEDM 95 p.111-p.114
[17]R. H. Dennard, "Field effect transistor memory," U. S. Patent 3, 387,286, granted June 4, 1968.
[18]Cheol Seong Hwang, Soon Oh Park, Hag-Ju Cho, Chang Suk Kang, Ho-Kyu Kang, Sang In Lee,and Moon Yong Lee , “Deposition of extremely thin (Ba,Sr)TiO3 thin films for ultra-large-scale integrated dynamic random access memory application", Appl. Phys. Lett. 67 (19), 6 November1995, p.2819-p.2821.
[19]Chich Shang Chang, Tai Bor Wu, Wong Cheng Shih and Lan Lin Chao, “Dielectric and Electrical Characteristics of Titanium-Modified Ta2O5 Thin Films Deposited on Nitrided Polysilicon by Metal-organic Chemical Vapor Deposition" Jpn. J. Appl. Phys. Vol.38(1999) , p.6812-p.6816
[20]A. Cappellani 1, J.L. Keddie, N.P. Barradas and S.M. Jackson, “Processing and characterisation of sol-gel deposited Ta2O5 and TiO2 -Ta2O5 dielectric thin films", Solid-State Electronics 43 (1999), p.1095-p.1099
[21]P.S.Dobal and R. S. Katiyar , “Micro-Raman scattering and x-ray diffraction studies of(Ta2O5 )x-(TiO2)1-xceramics", J. Appl. Phys. ,Vol 87, Number 12, 2000, p.8688-p.8694
[22]R. J. Cava, W. F. Peck, J. J. Krajewski, G. L. Roberts, B. P. Barber, H. M. 'Bryan, and P. L.Gammel, “Improvement of the dielectric properties of Ta2O5 through substitution with Al2O3", Appl. Phys. Lett. 70 (11), 17 March 1997, p.1396-p.1398
[23]P.C.Joshi,S.Stowell,and S.B.Desu,“Structural and electrical properties of crystalline1-x(Ta2O5)-x(Al2O3) thin films fabricated by metal-organic solution deposition technique", Appl. Phys. Lett. 71 (10), 8 September 1997, p.1341-p.1343
[24]Tae Song Kim, Myung Hwan Oh, Chong Hee Kim,“The thickness dependence of (Ba0.5Sr0.5)TiO3 thin films deposited on indium tin oxide-coated glass substrate using r.f. magnetron sputtering", Thin Solid Films 254(1995), p.273-p.277
[25]Kenji Natori, Daijiro Otani, and Nobuyuki Sano, “Thickness dependence of the effective dielectric constant in a thin film capacitor", Appl. Phys. Lett., Vol 73,1998, p.632-p.634
[26]R. H. Dennard, "Field effect transistor memory," U. S. Patent 3, 387,286, granted June 4, 1968.
[27]M. Liu , L.Q. Zhu Hf1_xSixOy dielectric films deposited by UV-photo-induced chemical vapour deposition (UV-CVD)
[28]S.Ezhilvalavan, Tseung-Yuen Tseng, “Progress in the developments of (Ba,Sr)TiO3 (BST) thin dilm for Gigabit era DRAMs”, Materials Chemistry and Physics, 65 (2000), pp 227-248.
[29]Heiji Watanable,"Interface engineering of a ZrO2/SiO2/Si layered structure by in situ reoxidation and its oxygen-pressure-dependent thermal stability", Applied Physics Letters , Vol. 78, No.24,p. 3803,2001
[30]J.P.Chang and Y.-S.Lin,“Dielectric Property and conduction mechanism of ultrathin zirconium oxide films", Applied Physics Letters , Vol. 79, No. 22, 2001
[31]S. M. Sze, Physics of Semiconductor Devices, 2nd ed. (Wiley, New York,1981).
[32]E.H.Nicollian and J. R.Brews,MOS(Metal Oxide Semiconductor)Physics and Technology(Wiley, New York, 1982).
[33]龔道本, 1996, “MIS 電容器的平帶電容的計算",半導體光電,第 17 卷, 第 一期, pp. 32-38.
[34]S. M. SZE, 1985, Physics of Semiconductor Device, Chapter 7, 2nd Edition, Central BookCompany, Taipei, Taiwan.
[35]W.Bolton, "Engineering Materials Technology" , 3rd Edition,1998
[36]詹世雄,鄧德宏,鄭晃忠, “鐵電薄膜之沉積與應用",電子月刊第二卷第七 期,p.70-p.72
[37]莊達人,"VLSI製造技術",高立圖書,1995
[38]A. Pignolet, G. Mohan Rao and S.B. Krupanidhi, "Rapid thermal processed thin films of reactively sputtered Ta2O5 ", Thin Solid Films 258 (1995) p.230-p.235.
[39]Stephen A. Campbell, David C. Gilmer, Xiao-chuan Wang, Ming-ta Hsieh, Hyeon-Seag Kim, Wayne L. Gladfelter, and Jinhua Yan, “MOSFET Transistors Fabricated with High Permitivity TiO2 Dielectric", IEEE Transcations on Electron Devices, VOL. 44, NO. 1, 1997, p.104-p.109
[40]W.Bolton, "Engineering Materials Technology", 3rd Edition,1998
[41]詹世雄,鄧德宏,鄭晃忠, “鐵電薄膜之沉積與應用",電子月刊第二卷第七 期,p.70-p.72
[42]H.-S. P. Wong,IBM,(2002)
[43]Rajesh Katamreddy a,b, Ronald Inman a, Gregory Jursich a, Axel Soulet a, Christos Takoudis b,c,〝Nitridation and oxynitridation of Si to control interfacial reaction with HfO2〞Thin Solid Films (2008)
[44]Donald A.Neamen〝Semiconductor Physiscs&Devices〞Third Edition2002
[45]Yung-Bin Lin and Joseph Ya-min Lee ,"The temperature dependence of the conduction current in Ba0.5Sr0.5TiO3 thin-film capacitors for memory device applications", J. Appl. Phys. ,Vol. 87, Number 4 , 2000, p.1841-p.1843
[46]Jae-Hyun Joo,Jeong-Min Seon, Yoo-Chan Jeon, Ki-Young Oh, Jae-Sung Roh and Jae-Jeong Kim, “Improvement of leakage currents of Pt/(Ba, Sr)TiO3/Pt capacitors", Appl. Phys. Lett. 70 (22), 2 June 1997, p.3053-p.3055
[47]Cheol Seong Hwang, Byoung Taek Lee, Chang Seok Kang, Ki Hoon Lee, Hag-Ju Cho, Horii Hideki, Wan Don Kim, Sang In Lee, and Moon Yong Lee, “Depletion layer thickness and Schottky type carrier injection at the interface between Pt electrodes and (Ba, Sr)TiO3 thin films", J. Appl. Phys. ,Vol. 85, Number 1 ,1999, p.287-p.295
[48]P. C. Joshi and M. W. Cole, “Influence of post-deposition annealing on the enhanced structural and electrical properties of amorphous and crystalline Ta2O5 thin films for dynamic random access memory applications", Journal of Applied Physics ,1999 Volume 86, Issue 2, p.871-p.880
[49]H.Sawada and K. Kawakami, “Electronic structure of oxygen vacancy in Ta2O5" J. Appl. Phys. ,Vol. 86, Number 2 ,1999, p.956-p.959
[50]Fu-Chien Chiu, Jenn-Jyh Wang, Joseph Ya-min Lee and Shich Chuan Wu, “Leakage currents in amorphous Ta2O5 thin films", J. Appl. Phys. 81 (10), 15 May 1997, p.6911-p.6914
[51]C. Chaneliere and J. L. Autran ,"Conduction mechanisms in Ta2O5 /SiO2 and Ta2O5/Si3N4 stacked structures on Si", J. Appl. Phys. ,Vol 86,1999, p.480-p.48667.
[52]S. Ezhilvalavan and Tseung-Yuen Tseng, " Conduction mechanisms in amorphous and crystalline Ta2O5 thin films", J. Appl. Phys. ,Vol 83, Number 9 ,1998, p.4797-p.4801
[53]C. Chaneliere, S. Four, J. L. Autran, R. A. B. Devine and N. P. Sandler,“Properties of amorphous and crystalline Ta2O5 thin films deposited on Si from a Ta(OC2H5)5 precursor", J. Appl. Phys. ,Vol 83, Number 9 ,1998, p.4823-p.4828
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔