(3.238.235.155) 您好!臺灣時間:2021/05/11 18:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:賴冠廷
研究生(外文):Quan-ting Lai
論文名稱:不同機制熱退火處理氧化鋅摻鋁薄膜之特性研究與應用
論文名稱(外文):The study on fabrication and application of different annealing mechanism to aluminum doped zinc-oxide
指導教授:莊賦祥莊賦祥引用關係黃建盛黃建盛引用關係
指導教授(外文):Fu-hsiang ChuangChien-sheng Huang
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:光學電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:141
中文關鍵詞:氧化鋅鋁有機發光二極體熱退火片電阻濺鍍
外文關鍵詞:OLEDsheet resistance.thermal annealAZOsputter
相關次數:
  • 被引用被引用:0
  • 點閱點閱:479
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於ITO逐漸短缺,本研究中利用磁控射頻濺鍍沉積系統沉積氧化鋅鋁及氧化鋅鎵這兩種新式透明導電薄膜,欲取代銦錫氧化物做為下發光式之有機發光二極體之陽極。首先以磁控射頻濺鍍沉積系統通入10sccm之氬氣,並控壓於3m torr,在電漿功率140瓦之下改變沉積時間以及轉盤之之轉速,尋求最佳度模條件。接著以RTA、CTA,及管中管的方式,對已濺鍍之透明導電膜進行不同氣體之熱退火後處理,欲加強透明導電膜之電性。最後,以最佳退火參數製作有機發光二極體。
由場發射掃描式電子顯微鏡(FE-SEM)得知,退火後之AZO薄膜,其表面狀態明顯由雜亂變為整齊排列及能量散射光譜儀(EDX)之數據顯示,經由氮氣及真空環境下退火之透明導電膜,其氧含量有明顯減少之趨勢;而經由氧退火之薄膜,雖然其表面狀態變好,但材料中的氧含量明顯增加。在X-光繞射儀(XRD)分析部份,可明顯看出管中管退火會使其(002)方向之鍵結強度明顯提升,遠大於快速熱退火及傳統熱退火。在電性分析方面,最佳之最火條件為攝氏450度之下,以管中管方式退火之AZO薄膜,其片電阻可達13 Ω/□,導電率為5.4*10-4 Ω-cm,為可應用於有機發光二極體元件之薄膜。最後,以450℃管中管氮氣退火之AZO製成有機發光二極體,亮度可達1890 cd/m2。
In this study, we try to fabricate a novel transparent conducting thin film, AZO by RF sputter, and apply it into organic light emiting diode. We want it to replace ITO because the shortage will happen soon. At first, we led argon 10 sccm into the chamber, then control the pressure of chamber at 3m torr and the sputtering power is 140W, changing the sputtering time and the rotatial rate of holder to find the best sputtering condition out. In the second section, we try the different annealing condition which is RTA, CTA, and Double Tubes method. In these conditions, we try the different gas source annealing, including vacuum, nitrogen, and oxyen, to inhance the electrical property of transparent conducting thin film. Finally, we use the best transparent conducting thin film to be the anode of OLED device.
The thin films which are annealled get a nice surface status from the SEM image. We can also find out that the quantity of oxyen atomics is decreased in vacuum and nitrogen annealing. But the quantity of oxyen atomics is increased in oxyen annealing condition, even though the surface status is better than without annealing. The XRD analysis shows us the Double Tubes method is the best way of transparent conducting thin filmannealing. The intensity of (002) direction is stronger than RTA system and CTA system. In the electrical analysis, the best annealing parameter is Double Tubes method, under 450oC, N2 environment for 30 min. The sheet resistance is 13 Ω/□, the resistivity is 5.4*10-4 Ω-cm, and it is enough to be the anode material. Finally, we used the AZO thin film which annealing by double tubes system with nitrogen under 450℃. The luminance could reach 1890 cd/m2.
中文摘要 --------------------------------------------------------------------------- i
英文摘要 --------------------------------------------------------------------------- ii
誌謝 --------------------------------------------------------------------------- iv
目錄 --------------------------------------------------------------------------- v
表目錄 --------------------------------------------------------------------------- vii
圖目錄 --------------------------------------------------------------------------- ix
第一章 緒論--------------------------------------------------------------------- 1
1.1 前言--------------------------------------------------------------------- 1
1.2 有機發光二極體的優勢-------------------------------------------- 1
1.3 透明導電膜------------------------------------------------------------- 3
1.4 研究動機---------------------------------------------------------------- 4
第二章 文獻回顧--------------------------------------------------------------- 7
2.1 透明導電膜------------------------------------------------------------- 7
2.1.1 透明導電膜的分類--------------------------------------------------- 7
2.1.2 透明導電氧化物薄膜之製備--------------------------------------- 8
2.1.3 提昇透明導電氧化物薄膜導電性之方法----------------------- 9
2.1.4 氧化鋅ZnO ------------------------------------------------------------- 10
2.1.4.1 AZO之電性------------------------------------------------------------- 14
2.1.4.2 AZO之光學特性------------------------------------------------------- 15
2.2 電漿簡介----------------------------------------------------------------- 17
2.2.1 電漿基本特性----------------------------------------------------------- 17
2.2.2 電漿化學應用及研究-------------------------------------------------- 18
2.2.3 電漿產生方式----------------------------------------------------------- 19
2.2.4 濺鍍沉積原理----------------------------------------------------------- 23
2.3 有機發光二極體-------------------------------------------------------- 25
2.3.1 有機發光二極體之原理---------------------------------------------- 25
2.3.2 有機發光二極體之材料---------------------------------------------- 28
第三章 實驗方法與步驟------------------------------------------------------ 31
3.1 實驗流程與步驟------------------------------------------------------ 31
3.2 玻璃基板清洗----------------------------------------------------------- 32
3.3 以射頻磁控射頻濺鍍系統沉積AZO、GZO透明導電膜---- 33
3.4 以RTA快速熱退火系統對AZO、GZO透明導電膜進行不同時間熱退火後處理-------------------------------------------------- 35
3.5 以RTA快速熱退火系統對AZO、GZO透明導電膜進行不同氣體熱退火後處理-------------------------------------------------- 38
3.6 以爐管熱退火系統對AZO、GZO透明導電膜進行不同氣體熱退火後處理----------------------------------------------------------- 40
3.7 以管中管熱退火系統對AZO、GZO透明導電膜進行不同氣體熱退火後處理-------------------------------------------------------- 43
3.8 以管中管熱退火系統對AZO、GZO透明導電膜進行不同溫度熱退火後處理-------------------------------------------------------- 46
3.9 實驗分析與量測-------------------------------------------------------- 50
3.9.1 場發射式電子顯微鏡(FE-SEM)------------------------------------- 51
3.9.2 能量散射光譜儀(EDS)------------------------------------------------ 51
3.9.3 X-光繞射儀(XRD)------------------------------------------------------ 52
3.9.4 薄膜測厚儀(α-step)---------------------------------------------------- 52
3.9.5 四點探針量測系統----------------------------------------------------- 53
3.10 有機發光二極體元件製作-------------------------------------------- 56
第四章 結果與討論------------------------------------------------------------ 60
4.1 最佳薄膜基本參數分析 60
4.1.1 不同轉速對氧化鋅摻鋁薄膜之影響分析 60
4.1.2 不同沉積時間對氧化鋅摻鋁薄膜之影響分析 68
4.1.3 不同退火時間對氧化鋅摻鋁薄膜之影響分析 77
4.2 不同機制退火之SEM分析 84
4.3 不同機制退火之EDS分析 89
4.4 不同機制退火之XRD分析 95
4.5 不同機制退火之穿透率分析 99
4.6 氧化鋅掺鋁薄膜粗糙度分析 104
4.7 不同機制退火之電性分析 110
4.7 有機發光二極體之電性分析 115
第五章 結論與未來展望------------------------------------------------------ 122
參考文獻 --------------------------------------------------------------------------- 123
[1]K. L. Chopra, S. Magor and D. K. Pandya, Thin Solid Films, 102, 1(1983)
[2]許國銓,“科技玻璃-高性能透明導電玻璃”,材料與社會,84,110-119 (1993)
[3]曲喜新、楊邦朝、姜節儉、張懷武編撰,“電子薄膜材料”,北京科學出版社 (1996)
[4]D.S. Ginley and C. Bright, MRS Bull., Aug., 15 (2000)
[5]B.G. Lewis and D.C. Paine, MRS Bull., Aug., 22 (2000)
[6]H. Kawazoe, H. Yanagi, K. Ueda, and H. Hosono, MRS Bull., Aug.,28 (2000)
[7]T. Minami, MRS Bull., Aug., 38 (2000)
[8]A.J. Freeman, K.R. Poeppelmeier, T.O. Mason, R.P.H. Chang, and T.
[9]J. Marks, MRS Bull., Aug., 45 (2000).
[10]R. G. Gordon, MRS Bull., Aug., 52 (2000)
[11]T. J. Coutts, D. L. Young, and X. Li, MRS Bull., Aug.,58 (2000)
[12]T.O. Mason, R.P.H. Chang, T.J. Mark, and K.R. Poeppelmeier, “ImprovedTransparent Conducting Oxides for Photovoltaics”, Final Research Report,Northwestern University, Evanston, Illinois, (1 may 1999-31 Dec. 2002)
[13]楊明輝,工業材料,179,134 (1999)
[14]張雅婷、蕭庭哲、吳俊毅,銦金屬資源與目前資源化處理技術之探討 (2008)
[15]A.J. Freeman, K.R. Poeppelmeier, T.O. Mason, R.P.H. Chang, and T.J. Marks, MRS Bull., Aug., 45 (2000).
[16]T.O. Mason, R.P.H. Chang, T.J. Mark, and K.R. Poeppelmeier, “ImprovedTransparent Conducting Oxides for Photovoltaics”, Final Research Report, Northwestern University, Evanston, Illinois, (1 may 1999-31 Dec. 2002)
[17]楊明輝,工業材料,179,134 (1999)
[18]M.-M. Bagheri-Mohagheghi and M. Shokooh-Saremi, Semicond. Sci.Technol.,l8, 97 (2003)
[19]D. Song, J. Xia, E.-C. Cho, and A. G. Aberie, Photovoltaics SpecialResearch Centre, University of New South Wales, UNSW Sydney NSW 2052, Australia
[20]R. Wang, A. Sleight, and R. Gardner, J. Mater. Res., 11, 1659 (1996)
[21]G. B. Palmer, K.R. Poeppelmeier, and T. O. Mason, Chem. Mater., 9, 3121 (1997)
[22]A. Wang, J. R. Babcock, N. L. Edleman, A. W. Metz, M. A. Lane, R. Asahi,V. P.Dravid, C. R. Kannewurf, A. J. Freeman, and T. J. Marks, PNAS, 98(13), 7113 (2001)
[23]T. Minami, T. Takumu, and S. Takata, J. Vac. Sci. Technol. A, 14, 1704(1996).
[24]G. Santana, A. Morales-Acevedo, O. Vigil, F. Cruz, G. Contreras-Puente,and L. Vaillant, Superficiesy Vacio, 9, 300 (Diciembre 1999)
[25]K. L. Chopra, S. Major, and D. K. Pandya, Thin Solid Film, 102, 01(1983)
[26]T. Minami, H. Nanto, S. Shoji, and S. Takata, Jpn. J. Appl. Phys.Part2, 23, L280 (1984)
[27]J. H. Lee and B. O. Park, Thin Solid Film, 426, 94 (2003)
[28]蔡裕榮,“以溶膠凝膠法制備透明導電氧化物薄膜的探討”,國立中正大學化學研究所碩士論文(2002)
[29]A. El Hichou, A. Bougrine, J. L. Bubendorff, J. Ebothe, M. Addou,and M. Troyon, Semicond. Sci. Technol., l7, 607 (2002)
[30]K., Daoudi, B. Canut, M. G. Blanchin, C. S. Sandu, V. S.Teodorescu, J. A. Roger, Mater. Sci. Eng. C, 21, 313 (2002)
[31]L. Dawar, and J. C. Joshi, J. Mater. Sci., 19, 01 (1984)
[32]謝坤龍,“鈀銀合金/氧化鋁複合膜之特性研究:/以溶膠凝膠法修飾基材孔徑之探討”,國立成功大學化學工程研究所碩士論文 (2000)
[33]D. H. Zhang, H. L. Ma, Applied Physics A, 62, 487 (1996)
[34]Ben G. Streetman and Sanjay Banerjee, “Solid state electronicdevices”, Prentice Hall (2000)
[35]H. L. Hartnagel, A. L. Dawar, A. K. Jain, C. Jagadish, “Semiconducting Transparent Thin Films”, Institute of PhysicsPublishing (1995)
[36]劉思呈,“一維奈米氧化鋅結構之成長與特性分析” ,國立成功大學化學工程研究所博士論文 (2004)
[37]G. Neumann, Phys. Status Solids, B105 (1981) 605.
[38]D. J. Leary, J. O. Barnes, and A. G. Jordan, J. Electrochem. Soc, 29
(1982) 1328.
[39]劉思呈,“一維奈米氧化鋅結構之成長與特性分析” ,國立成功大學化學工程研究所博士論文 (2004)
[40]李玉華,“透明導電膜及其應用”,科儀新知,12, 94 (1990)
[41]陳建華,“P-型透明導電膜應用於有機發光二極體”,國立成功大學化學工程研究所碩士論文 (2003)
[42]顧鴻壽 光電有機電激發光顯示器技術及應用
[43]B. Chapman, Glow Discharge Processes (1980) p.52.
[44]龍文安,積體電路微影製程,高立出版。
[45]Hsuan-Yi Yu,Studying of the AZO Transparent Conductive Thin Film by RF Magnetron Sputtering,大同大學材料工程系碩士論文(2005)
[46]W. D. Gill, “Drift mobility in amorphous charge-transfer complexes of trinitrofluorenone and poly-n-vinylcarbazole,” J. Appl. Phys. 43,5033–5040, 1972.
[47]陳永森,“熱處理對氧化銦錫(ITO)透明膜玻璃特性之研究”,碩士論文,電子工程學系,義守大學,2002。
[48]鄭翰元, “Electrode Modifications of Molecular Light Emitting Diodes”,碩士論文,材料科學研究所,國立中山大學,2003。
[49]Y. Park, V. Choong, Y. Gao, B. R. Hsieh, and C. W. Tang, “Work function of indium tin oxide transparent conductor measured by photoelectron spectroscopy,” Appl. Phys. Lett., vol.68, p.2699, 1996.
[50]Huei-Tzong Lu and Meiso Yokoyama, “Plasma preparation on indium-tin-oxide anode surface for organic light emitting diodes,” Journal of Crystal Growth., vol.260, p.186, 2004.
[51]Dan Lu, Ying Wu, Jianhua Guo, Guang Lu, Yue Wang and Jiacong Shen, “Surface treatment of indium tin oxide by oxygen-plasma for organic light-emitting diodes,” Materials Science and Engineering, vol.97, p.141, 2003.
[52]Mitschke, U.;Bauerle, P. J. Mater. Chem. 10, 1471 (2000).
[53]陳金鑫, 石建民, 鄧青雲. 化學 54, 125 (1996).
[54]X. J. Wang, J. M. Zhao, Y. C. Zhou, X. Z. Wang and S. T. Zhang,“Enhancement of electron injection in organic light-emitting devices using an Ag/LiF Cathode,” J. Appl. Phys., vol.95, p.3828, 2004.
[55]翁瑞興,“有機發光二極體在金屬與有機層界面的注入機制”,碩士論文,電機工程學系,國立中山大學,2001。
[56]L. S. Hung, C. W. Tang, and M. G. Mason, “Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode,” A. P. L., vol.70, p.152, 1997.
[57]林明彥、張嘉升、黎文龍 ,“An Introduction to the Principle of Atomic Force
Microscope”, 科儀新知第二十七卷第二期,2005。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔