(3.238.130.97) 您好!臺灣時間:2021/05/14 00:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:夏偉倫
研究生(外文):Wei-Lun Hsia
論文名稱:非理想效應之校正補償系統於積體化之設計與陣列式離子感測器量測系統之研究
論文名稱(外文):Study on the calibration of non-ideal effects for integrated design and the measurement system of ion sensor array
指導教授:周榮泉周榮泉引用關係
指導教授(外文):Jung-Chuan Chou
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:光學電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:181
中文關鍵詞:非理想效應校正電路離子感測器陣列量測系統遲滯效應時漂效應
外文關鍵詞:Drift effectNon-ideal effectCalibration circuitIon sensor array measurement systemHysteresis effect
相關次數:
  • 被引用被引用:0
  • 點閱點閱:128
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出以吾人於電路系統校正離子感測器之非理想效應之研究,其系統有二,一是時漂校正系統,另一是離子感測器陣列量測系統。於時漂校正系統中,將時漂現象以簡化之模型描述其行為;於其電路設計上,提供特定額度之負電壓外加至輸出訊號,規律的降低時漂所造成之電壓上升現象。優點在於可針對合適之時漂率而調整特定的負電壓值。依據設計所得之結果,此法成功的使時漂率降低91.54%,且使感測度保持於有效範圍。另一降低非理想效應之方式為離子感測器陣列量測系統,此法使用平均值之概念,可同時讀取8支電極之電壓訊號,並經電路計算得一平均值,使得少數電極較大之非理想效應被衰減。於實驗結果顯示時漂率僅1.638V/hr,遲滯量僅1.118mV,遠低於參考文獻之記錄,此法不僅降低非理想效應,同時亦可提升整體之準確度與效率。另外,為使整體電路達微型化與降低消耗功率,吾人亦設計一折疊疊接式運算放大器(Folded-cascade operational amplifier)作為一加法器(Adder)應用於系統中,以朝可攜式與低功率發展。
The study presented two designed calibration system for non-ideal effects, one is drift calibration system, and the other is ion sensor array measurement system. In the drift calibration system, the simplified models were used to describe the drift behavior. There is a particular negative voltage which was added to the output signal in the circuit design for reducing regularly the phenomenon of raising output response due to the drift effect. According to the experimental results, this method reduces the drift rate 91.54% successfully, and keeps the sensitivity in effective range. Another method, ion sensor array measurement system, uses an idea of average value. This method reads 8 potential signals at the same time, and can obtain an average value which was calculated by circuitry, which method can reduce the large influence of non-ideal effects by few bad electrodes. According to the experimental results, the drift rate is 1.638mV/hr, and the hysteresis is 1.118mV, which are better than the studies of previous researchers. This method not only can reduce the non-ideal effects, but also can increases the accuracy and stability of the whole system. Additionally, in order to miniaturize the measurement system and reduce power consumption, a folded-cascade operational amplifier is designed to be an adder applied in these two system.
Chinese abstract -------------------------------------------------------------------------i
English abstract --------------------------------------------------------------------------iii
Acknowledgement ----------------------------------------------------------------------v
Contents ----------------------------------------------------------------------------------vi
List of Tables ----------------------------------------------------------------------------ix
List of Figures ---------------------------------------------------------------------------x
Chapter 1 Introduction -------------------------------------------------------------1

1.1 Background --------------------------------------------------------------------------1
1.2 Motive and purpose ----------------------------------------------------------------5
1.3 Thesis outline ------------------------------------------------------------------------6

Chapter 2 Theory Description ----------------------------------------------------11

2.1 Introduction of pH definition ------------------------------------------------------11
2.2 Introduction of potentiometric sensor measurement system ------------------12
2.3 Potential response of SEGFET ----------------------------------------------------15
2.3.1 Equivalent circuit ------------------------------------------------------------15
2.3.2 Sensing mechanism on the surface of a pH sensor ----------------------15
2.4 Mechanism of the non-ideal effects of a pH sensor ----------------------------19
2.4.1 Mechanism of the drift ------------------------------------------------------19
2.4.2 A physical model of the drift -----------------------------------------------20
2.4.3 Mechanism of the hysteresis -----------------------------------------------21
2.4.4 A physical model of the hysteresis ----------------------------------------22

Chapter 3 Experimental of non-ideal effects -----------------------------------30

3.1 Fabrication of the RuO2 pH sensor -----------------------------------------------30
3.1.1 Materials and reagents -------------------------------------------------------30
3.1.2 Preparation of the solid-state RuO2 pH electrode ------------------------30
3.2 Measurement system ---------------------------------------------------------------32
3.3 Characteristics of the RuO2 sensor -----------------------------------------------33
3.3.1 Sensitivity and linearity -----------------------------------------------------33
3.3.2 Sensitivities of the RuO2 pH sensors with different thicknesses ------33
3.4 Drift phenomenon of the RuO2 pH sensor --------------------------------------35
3.5 Hysteresis phenomenon of the RuO2 pH sensor --------------------------------35

Chapter 4 Experimental of calibration circuits -------------------------------49

4.1 Drift calibration system ------------------------------------------------------------49
4.2 Ion sensor array measurement system -------------------------------------------51
4.2.1 The apparatus of the ion sensor array measurement system -----------51
4.2.2 The technology for calculating the average number of voltages ------52

Chapter 5 Integrated circuit ------------------------------------------------------60

5.1 Introduction --------------------------------------------------------------------------60
5.2 Principle and structure -------------------------------------------------------------62
5.3 Design a folded-cascode operational amplifier ---------------------------------63

Chapter 6 Results and discussion ------------------------------------------------72

6.1 Sensing properties of the RuO2 pH sensor --------------------------------------72
6.2 Characteristics of the drift calibration system ----------------------------------73
6.3 Characteristics of the ion sensor array measurement system -----------------74
6.3.1 Sensitivity ---------------------------------------------------------------------74
6.3.2 Accuracy and Stability ------------------------------------------------------74
6.3.3 Drift effect --------------------------------------------------------------------75
6.3.4 Hysteresis effect --------------------------------------------------------------76
6.4 Compare the performance between two designed systems -------------------78
6.5 Analysis of the non-ideal calibration in systems, and methods ---------------79
6.5.1 Comparison of calibration systems ----------------------------------------79
6.5.2 Comparison of calibration methods ---------------------------------------80
6.6 Folded-cascode operational amplifier --------------------------------------------81
6.6.1 Layout and simulation -------------------------------------------------------81
6.6.2 Post-simulation ---------------------------------------------------------------81
6.6.3 Comparison among other operational amplifiers ------------------------82

Chapter 7 Conclusion ---------------------------------------------------------------108

Chapter 8 Suggestions for further work ----------------------------------------111

References -------------------------------------------------------------------------------112

Chinese introduction ------------------------------------------------------------------123

Questions and answers ----------------------------------------------------------------140

Autobiography -------------------------------------------------------------------------160

List of Tables
Table 3-1. Comparison of sensitivities among five thicknesses of RuO2 thin film. -----------------------------------------------------------------------37
Table 3-2. Relationship between the drift property of RuO2 pH sensor and the temperatures. --------------------------------------------------------37
Table 4-1. Experimental parameters for response measurement. --------------54
Table 5-1. TSMC SPICE parameters of 0.35μm typical model for 3.3V devices. -------------------------------------------------------------------66
Table 5-2. Specification of a folded-cascode op-amp. --------------------------67
Table 5-3. Aspect ratio of transistors in folded-cascode op-amp. -------------67
Table 6-1. Specification of the RuO2 pH sensor. --------------------------------83
Table 6-2. Comparison of characteristics among before calibration and after calibration. ----------------------------------------------------------------83
Table 6-3. Sensitivities and pH-measured range of a RuO2 single sensor and a RuO2 sensor array. ----------------------------------------------------84
Table 6-4. Comparison of drift rates among RuO2 sensor array, RuO2 single sensor, and previous literatures. ---------------------------------------85
Table 6-5. Comparison of hysteresis width among RuO2 sensor array, RuO2 single sensor, and previous literatures. -------------------------------86
Table 6-6. Comparison of the performance between the designed systems.--87
Table 6-7. Comparison of the systems for drift calibration. --------------------88
Table 6-8. Comparison of the methods of drift calibration. --------------------89
Table 6-9. Specifications of pre-simulation and post-simulation. -------------90
Table 6-10. Advantages and disadvantages of the folded-cascode operational amplifier [73]. ------------------------------------------------------------91
Table 6-11. Comparison between four operational amplifiers for performance [73]. -------------------------------------------------------91

List of Figures
Fig. 1-1. Cross-section structure of MOSFET (NMOS) [69]. ------------------7
Fig. 1-2. Cross-section structure of ISFET [1]. -----------------------------------8
Fig. 1-3. Structure of EGISFET [27]. ------------------------------------------9
Fig. 1-4. Cross-section structure of SEGFET [72]. ------------------------------9
Fig. 1-5. Design scheme of the calibration circuit for non-ideal effects. ------10
Fig. 2-1. Scheme of the system of the ISE (at left side) combined with an reference electrode (at right side) for measuring ionic species in an aqueous sample: (a) conducting wire; (b) cap; (c) glass electrode body; (d) Ag/AgCl core; (e) filling solution; (f) reference electrode filling solution (saturated KCl or 3.5M KCl); (g) ion-selective membrane; (h) porous frit [40]. ------------------------------------------24
Fig. 2-2. Scheme of the system of the ISFET for measuring ionic species in an aqueous sample: (a) reference electrode; (b) ISFET [1]. ---------25
Fig. 2-3. Scheme of the system of the SEGFET for measuring ionic species in an aqueous sample: (a) reference electrode; (b) SEGFET; (c) voltage amplifier [72]. ----------------------------------------------------26
Fig. 2-4. Equivalent circuit with asymmetric ion-selective device [41]. ------27
Fig. 2-5. Hydration and hydroxylation of metal oxide surfaces with the formation of (a) acid hydroxyl groups and (b) base hydroxyl groups. Lattice oxide ion (○); lattice metal ion (●) [42]. -----------27
Fig. 2-6. (a)The curves of drain-source current (IDS) versus gate voltage (VG) between pH1~pH13; (b) the sensitivity and linearity of the pH electrode. ---------------------------------------------------------------28
Fig. 2-7. Dispersive transport at the electrolyte–insulator interface [47]. -----29
Fig. 3-1. Fabrication scheme of the RuO2 membrane. ---------------------------38
Fig. 3-2. Preparation of the RuO2 pH electrode. ----------------------------------38
Fig. 3-3. Scheme of I-V measurement system. -----------------------------------39
Fig. 3-4. Scheme of V-T measurement system. ----------------------------------39
Fig. 3-5. (a) The curves of drain-source current (IDS) versus gate voltage (VG) between pH1 and pH13; (b) the sensitivity and linearity of the pH electrode. -----------------------------------------------------------40
Fig. 3-6. (a) When sputtered 5min, the grain size is about 20nm. (b) When sputtered 10min, the grain size is about 26nm. (c) When sputtered 15min, the grain size is about 37nm. (d) When sputtered 20min, the grain size is about 50nm. (e) When sputtered 60min, the grain size is about 90nm. --------------------------------------------------------41
Fig. 3-7. (a) When sputtered 15 min, the thickness of RuO2 thin film is about 85nm. (b) When sputtered 10 min, the thickness of RuO2 thin film is about 133nm. (c) When sputtered 15 min, the thickness of RuO2 thin film is about 158nm. (d) When sputtered 20 min, the thickness of RuO2 thin film is about 365nm. (e) When sputtered 60 min, the thickness of RuO2 thin film is about 571nm. ----------------44
Fig. 3-8. Cross-section structure of ion-sensitive electrode. --------------------47
Fig. 3-9. Drift rate of SEGFET in pH 7 electrolyte. -----------------------------47
Fig. 3-10. Relationship between the temperatures and the sensitivities. --------48
Fig. 3-11. Hysteresis of SEGFET in pH loop cycle pH7- pH4- pH7- pH10- pH7. -------------------------------------------------------------------------48
Fig. 4-1. A simplified model of the measurement curve. -----------------------54
Fig. 4-2. An ideal model of the ideal curve. --------------------------------------55
Fig. 4-3. Schematic diagram of the drift calibration system. -------------------55
Fig. 4-4. A calibration model compared with an ideal model. ------------------56
Fig. 4-5. Offset null pins of an operational amplifier (LF351). ----------------56
Fig. 4-6. A zero-balancing circuit for eliminating offset voltage [81]. --------57
Fig. 4-7. Offset voltage is about -47.8mV before adjusting. --------------------57
Fig. 4-8. Offset voltage is down to -0.14mV after adjusting. -------------------58
Fig. 4-9. Schematic diagram of ion sensor array measurement system. ------58
Fig. 4-10. A sensor array comprises eight RuO2 sensors in this study. ---------59
Fig. 5-1. Common-source and common-gate configurations of the folded-cascode structure. -------------------------------------------------68
Fig. 5-2. A p-channel folded-cascode op-amp circuit. ---------------------------69
Fig. 5-3. Bias circuit of folded-cascode op-amp. ---------------------------------70
Fig. 5-4. The designed flowchart of folded-cascode op-amp. ------------------71
Fig. 6-1. Sensitivity is 53.359mV/pH before calibration. -----------------------92
Fig. 6-2. (a) A curve of response voltage versus time, and drift rate is 1.108 mV/hr; (b) Sensitivity is 38.968mV/pH after calibration. -----------93
Fig. 6-3. (a) A curve of response voltage versus time, and drift rate is 0.268 mV/hr; (b) Sensitivity is 10.469mV/pH after calibration. -----------94
Fig. 6-4. (a) A curve of response voltage versus time, and drift rate is 0.268mV/hr; (b) Sensitivity is 2.538mV/pH after calibration. ------95
Fig. 6-5. A curve measured in pH1 to pH13 buffer solutions without using the apparatus and technology of the sensor array measurement system, and its sensitivity is 51.704mV/pH. ---------------------------96
Fig. 6-6. A curve measured in pH1 to pH13 buffer solutions with using the apparatus and technology of the sensor array measurement system, and its sensitivity is 56.722mV/pH. -------------------------------------97
Fig. 6-7. A curve of single sensor measured in pH7 buffer solution for 12 hours without calibration, and its drift rate is 6.366mV/hr. ----------98
Fig. 6-8. A curve of sensor array measured in pH7 buffer solution for 12 hours with calibration, and its drift rate is 1.638mV/hr. --------------98
Fig. 6-9. A curve of single sensor measured in pH loop cycle without calibration, and its hysteresis is 14.938mV. ----------------------------99
Fig. 6-10. A curve of sensor array measured in pH loop cycle with calibration, and its hysteresis is 1.118mV. -----------------------------99
Fig. 6-11. Layout plan of folded-cascode op-amp. --------------------------------100
Fig. 6-12. Bounding arrangement of designed circuit. ----------------------------101
Fig. 6-13. DC gain is 77dB, and phase margin is 88°. ----------------------------102
Fig. 6-14. Output voltage range is −0.792V to 0.647V, and input offset voltage is 24.7μV. ---------------------------------------------------------102
Fig. 6-15. Slew rate is 5.39V/μs. -----------------------------------------------------103
Fig. 6-16. Input common mode range (ICMR) is −1.11V to 0.651V. ----------103
Fig. 6-17. Common mode rejection ratio (CMRR) is 100.5dB. -----------------104
Fig. 6-18. Positive power supply rejection ratio (PSRR+) is 75.6dB. ----------104
Fig. 6-19. Negative power supply rejection ratio (PSRR−) is 91.2dB. ---------105
Fig. 6-20. Result of the DRC verification. ------------------------------------------106
Fig. 6-21. Result of the LVS verification. ------------------------------------------107
[1]P. Bergveld, 1970, “Development of an ion sensitive solid-state device for neurophysiological measurements”, IEEE Transactions on Biomedical Engineering, BME-17, pp. 70-71.
[2]A. Topkar, R. Lal, 1993, “Effect of electrolyte exposure on silicon dioxide in electrolyte-oxide-semiconductor structure”, Thin Solid Films, vol. 232, pp. 265-270.
[3]B. D. Liu, Y. K. Su, S. C. Chen, 1989, “Ion-sensitive field-effect transistor with silicon nitride gate for pH sensing”, International Journal of Electronics, vol. 67, pp. 59-63.
[4]A. Garde, J. Alderman, W. Lane, 1995, “Development of a pH-sensitive ISFET suitable for fabrication in a volume production environment”, Sensors and Actuators B, vol. 26-27, pp. 341-344.
[5]D. L. Harame, L. J. Bousse, J. D. Shott, J. D. Meindl, 1987, “Ion-sensing devices with silicon nitride and borosilicate glass insulators”, IEEE Transactions on Electron Devices, vol. ED-34, pp. 1700-1707.
[6]M. N. Niu, X. F. Ding, Q. Y. Tong, 1996, “Effect of two types of surface sites on the characteristics of Si3N4-gate pH-ISFETs”, Sensors and Actuators B, vol. 37, pp. 13-17.
[7]C. M. Sue, H. K. Liao, J. C. Chou. W. Y. Chung, T. P. Sun, S. K. Hsiung, 1997, “Study on Si3N4/SiO2 gate ion sensitive field effect transistor”, Proceedings of The 1997 Electron Devices and Materials Symposium (EDMS), National Central University, Taiwan, R.O.C., pp. 383-386.
[8]H. K. Liao, J. C. Chou. W. Y. Chung, T. P. Sun, S. K. Hsiung, 1997, “Study on the interface trap density of the Si3N4/SiO2 gate ISFET”, Proceedings of The 3rd International East Asian Conference on Chemical Sensors, Hoam Convention Center, Seoul National University, Seoul Korea, November 5-6, pp. 394-400.
[9]C. L. Wu, J. C. Chou, W. Y. Chung, T. P. Sun, S. K. Hsiung, 1999, “Study on SnO2/Al/SiO2/Si ISFET with a metal light shield”, Materials Chemistry and Physics, vol. 63, pp. 153-156.
[10]E. H. Yang, 1998, Study on SnO2 film for ion sensitive field effect transistor, Institute of Electronic Engineering, Chung-Yuan Christian University, Master Thesis.
[11]H. K. Liao, L. L. Chi, J. C. Chou, W. Y. C., T. P. Sun, S. K. Hsiung, 1999, “Study on pHPZC and surface potential of tin oxide gate ISFET”, Materials Chemistry and Physics, vol. 59, pp. 6-11.
[12]H. K. Liao, J.g C. Chou, W. Y. C.g, T. P. Sun, S. K. Hsiung, 1999, “Temperature and optical characteristics of tin oxide membrane gate ISFET”, IEEE Transactions on Electron Devices, vol. 46(12), pp. 2278-2281.
[13]H. K. Liao, J. C. Chou, W. Y. Chung, T. P. Sun, S. K. Hsiung, 2000, “The influence of isothermal annealing on tin oxide thin film for pH-ISFET sensor”, Sensors and Actuators B, vol. 65, pp. 23-25.
[14]J. C. Chou, C. Y. Weng, H. M. Tasi, 2002, “Study on the temperature Effects of Al2O3 gate pH-ISFET”, Sensors and Actuators B, vol. 81, pp. 152-157.
[15]L. Bousse, H. H. Van Den Vlekkert, N. F. De Rooij, 1990, “Hysteresis in Al2O3-gate ISFETs”, Sensors and Actuators B, vol. 2, pp. 181-183.
[16]D. H. Kwon, B. W. Cho, C. S. Kim, B. K. Sohn, 1996, “Effect of heat treatment on Ta2O5 sensing membrane for low drift and high sensitivity pH-ISFET”, Sensors and Actuators B, vol. 34, pp. 441-445.
[17]J. C. Chou, Y. S. Li, J. L. Chiang, 2000, “Simulation of Ta2O5 gate ISFET temperature characteristics”, Sensors and Actuators B, vol. 71, pp. 73-76.
[18]J. C. Chou, K. Y. Huang, and J. S. Lin, 2000, “Simulation of time dependent effects of pH-ISFETs”, Sensors and Actuators B, vol. 62, pp. 88-91.
[19]G. R. Fox, D. Damjanovic, 1997, “Electrical characterization of sputter- deposited ZnO coatings on optical fibers”, Sensors and Actuators A, vol. 63, pp. 153-160.
[20]S. Basu, A. Dutta, 1997, “Room temperature hydrogen sensors based on ZnO”, Materials Chemistry and Physics, vol. 47, PP.93-96.
[21]H. W. Ryu, B. S. Park, S. A. Akbar, W. S. Lee, K. J. Hong, Y. J. Seo, D. C. Shin, J. Seong, J. S. Park, G. P. Choi, 2003, “ZnO sol-gel derived porous film for CO gas sensing”, Sensor and Actuators B, vol. 96, pp. 717-722.
[22]J. C. Chou, C. N. Hsiao, 2000, “The hysteresis and drift effect of hydrogenated amorphous silicon for ISFET sensor”, Sensors and Actuators B, vol. 66, pp. 181-183.
[23]J. C. Chou, C. N. Hsiao, 2000, “Drift behaviour of ISFETs with a-Si:H-SiO2 gate insulator”, Materials Chemistry and Physics, vol. 63(3) , pp. 270-273.
[24]J. C. Chou, Y. F. Wang, J. S. Lin, 2000, “Temperature effect of a-Si:H pH-ISFET”, Sensors and Actuators B, vol. 62, pp. 92-96.
[25]J. C. Chou, Y. F. Wang, 2001, “Temperature characteristics of a-Si:H gate ISFET”, Materials Chemistry and Physics, vol. 70, pp. 107-111.
[26]J. C. Chou, H. M. Tasi, C. N. Hsiao, J. S. Lin, 2000, “Study and simulation of the drift behaviour of hydrogenated amorphous silicon gate pH-ISFET”, Sensors and Actuators B, vol. 62, pp. 97-101.
[27]J. Van Der Spiegel, I. Lauks, P. Chan, D. Babic, 1983, “The extended gate chemical sensitive field effect transistor as multi-species microprobe”, Sensors and Actuators B, vol. 4, pp. 291-298.
[28]A. Fog, R. Buck, 1984, “Electronic semi-conducting oxides as pH sensors”, Sensors and Actuators, vol. 5, pp. 137-146.
[29]J. C. Chou, C. W. Chen, P. L. Chou, 2007, “Fabrication of ruthenium oxide thin film and response characteristic for hydrogen ion,” Proceedings for Annual Meeting of Physical Society of The Republic of China, National Central University, Taiwan, R.O.C., vol. 29, PB-23, p. 256.
[30]P. Hein, P. Egger, 1993, “Drift behaviour of ISFETs with Si3N4-SiO2 Gate Insulator”, Sensors and Actuators B, vol. 13, pp. 655-656.
[31]L. T. Yin, J. C. Chou, W. Y. Chung, T. P. Sun, S. K. Hsiung, 2000, “Separate structure extended gate H+-Ion sensitive field effect transistor on a glass substrate”, Sensors and Actuators B, vol. 71, pp.106-111.
[32]Z. Yule, Z. Shouan, L. Tao, 1994, “Drift characteristic of pH-ISFET output”, Chinese Journal of Semiconductors, vol. 12, no. 15, pp. 838-843.
[33]L. Bousse, S. Mostarshed, B. Van Der Schoot, N. F. De Rooij, 1994, “Comparison of the hysteresis of Ta2O5 and Si3N4 pH-sensing insulators”, Sensors and Actuators B, vol. 17, pp. 157-164.
[34]D. Yu, Y. D. Wei, G. H. Wang, 1991, “Time-dependent response characteristics of pH-sensitive”, Sensors and Actuators B, vol.3, pp.279-285.
[35]P. Hein, P. Egger, 1993, “Drift behavior of ISFETs with Si3N4-SiO2 gate insulator”, Sensors and Actuators B, vol.13-14, pp.655-656.
[36]L. Bousse, S. Mostarshed, B. van der Schoot, N.F. de Rooij, 1994, “Comparison of the hysteresis of Ta2O5 and Si3N4 pH-sensing insulators”, Sensors and Actuators B, vol.17, pp.157-164.
[37]鍾雨樂,趙守安,劉濤,1994,“pH-ISFET輸出時漂特性的研究”,半導體學報,第15卷,第12期,頁838-843。
[38]H. Rilbe, 1996, “pH and buffer theory - a new approach”, Willey Series in Solution Chemistry, pp.1.
[39]Richard S. C. Cobbold, 1973, “Transducers for biomedical measurement”, John Wiley, New York.
[40]Research Solutions & Resources LLC, “The Ag/AgCl reference electrode”, http://www.consultrsr.com/resources/ref/agcl.htm
[41]J. Janata, 1983, “Electrochemistry of chemically sensitive field effect transistors”, Sensors and Actuators, Vol. 4, pp.255-265.
[42]H. Tamura, K. Mita, A.Tanaka, M. Ito, 2001, “Mechanism of hydroxylation of metal oxide surfaces”, Journal of Colloid and Interface Science, vol.243, pp.202-207.
[43]H. N. McMurray, P. Douglas, D. Abbot, 1995, “Novel thick-film pH sensors based on ruthenium dioxide-glass composites”, Sensors and Actuators B, vol. 2, pp. 9-15.
[44]Y. H. Liao, J. C. Chou, 2008, “Preparation and characteristics of ruthenium dioxide for pH array sensors with real-time measurement system”, Sensors and Actuators B, vol. 128, pp.603-612.
[45]H. H. Van Den Vlekkert, L. Bousse, and N.F. De Rooij, 1988, “The temperature dependence of the surface potential at the Al2O3/electrolyte interface”, Journal of Colloid and Interface Science, vol. 122, pp. 336-345.
[46]L. T. Yin, J. C. Chou, W. Y. Chung, T. P. Sun, S. K. Hsiung, 2000, “Separate structure extended gate H+-ion sensitive field effect transistor on a glass substrate”, Sensors and Actuators B, vol. 71, pp. 106-111.
[47]S. Jamasb, S. D. Collins, R. L. Smith, 1998, “A physical model for drift in pH ISFETs”, Sensors and Actuators B, vol.49, pp. 146-155.
[48]S. Jamasb, S. D. Collins, R. L. Smith, 1998, “A physical model for threshold voltage instability in Si3N4-gate H+-sensitive FET’s (pH ISFET’s)”, IEEE Transactions on Electron Devices, vol.45, pp. 1239-1245.
[49]P. Woias, L. Meixner, P. Frostl, 1998, “Slow pH response effects of silicon nitride ISFET sensors”, Sensors and Actuators B, vol. 48, pp. 501–504.
[50]L. Bousse, D. Hafeman, N. Tran, 1990, “Time-dependence of the chemical response of silicon nitride surfaces”, Sensors and Actuators B, vol. 1, pp. 361-367.
[51]Y. Dun, W. Ya-Dong, W. Gui-Hua, 1991, “Time-dependent response characteristics of pH-sensitive ISFET”, Sensors and Actuators B, vol. 3, pp. 279-285.
[52]J. C. Chou, H. M. Tsai, C. N. Shiao, J. S. Lin, 2000, “Study and simulation of the drift behavior of hydrogenated amorphous silicon gate pH-ISFET”, Sensors and Actuators B, vol.62, pp.97-101.
[53]T. Mikolajick, R. Kuhnhold, H. Ryssel, 1997, “The pH-sensing properties of tantalum pentoxide films fabricated by metal organic low pressure chemical vapor deposition”, Sensors and Actuators B, vol. 44, pp. 262-267.
[54]Y. H. Liao, J. C. Chou, 2008, “Preparation and characteristics of ruthenium dioxide for pH array sensors with real-time measurement system”, Sensors and Actuators B, vol. 128, pp. 603-612.
[55]武士香、虞惇、王貴華,1991,“化學量傳器”,傳感器技術,第1期,頁56-62。
[56]J. P. Xu, P. T. Lai, B. Han, W. M. Tang, 2004, “Determination of optimal insulator thickness for MISiC hydrogen sensors”, Solid-State Electronics, vol. 48, pp. 1673-1677.
[57]L. P. Liao, 2003, Study on the integrated readout circuit design for the pH-ISFET based on titanium dioxide, National Yunlin University of Science and Technology, Master Thesis.
[58]J. L. Chiang, S. S. Jan, J. C. Chou, Y. C. Chen, 2001, “Study on the temperature effect, hysteresis and drift of pH-ISFET devices based on amorphous tungsten oxide”, Sensors and Actuators B, vol. 76, pp. 624-628.
[59]J. C. Chou, Y. F. Wang, 2002, “Preparation and study on the drift and hysteresis properties of the tin oxide gate ISFET by the sol-gel method”, Sensors and Actuators B, vol. 86, pp. 58-62.
[60]Y. H. Liao, J. C. Chou, 2006, “Study on the nonideal characteristics of the extended gate field effect transistor based on the ruthenium nitride sensing membrane”, Proceedings of the 3rd Asia-Pacific Conference of the Transducers and Micro-Nano Technology, Singapore, 4 pages (disk).
[61]T. Matsuo, M. Esashi, 1981, “Method of ISFET fabrication”, Sensors and Actuators, vol. 1, pp. 77-96.
[62]J. C. Chou, C. N. Hsiao, 2000, “Drift behavior of ISFETs with a-Si:H-SiO2 gate insulator”, Materials Chemistry and Physics, vol. 63, pp. 270-273.
[63]J. C. Chou, C. Y. Weng, 2001, “Sensitivity and hysteresis effect in Al2O3 gate pH-ISFET”, Materials Chemistry and Physics, vol. 71, pp. 120-124.
[64]J. C. Chou, C. N. Hsiao, 2000, “The hysteresis and drift effect of hydrogenated amorphous silicon for ISFET”, Sensors and Actuators B, vol. 66, pp. 181-183.
[65]J. C. Chou, Y. F. Wang, 2002, “Preparation and study on the drift and hysteresis properties of the tin oxide gate ISFET by sol-gel method”, Sensors and Actuators B, vol. 86, pp. 58-62.
[66]C. N. Tsai, J. C. Chou, T. P. Sun, S. K. Hsiung, 2005, “Study on the sensing characteristics and hysteresis effect of the tin oxide pH electrode”, Sensors and Actuators B, vol. 108, pp. 877-882.
[67]S. S. Jan, Y. C. Chen, J. C. Chou, 2005, “Effect of Mg2+-dopant on the characteristics of lead titanate sensing membrane for ion-sensitive filed-effect transistors”, Sensors and Actuators B, vol. 108, pp. 883-887.
[68]J. L. Chiang, J. C. Chou, Y. C. Chen, G. S. Liau, C. C. Cheng, 2003, “Drift and hysteresis effects on AlN/SiO2 gate pH ion-sensitive field-effect transistor”, Japanese Journal of Applied Physics, vol. 42, pp. 4973-4977.
[69]B. Razavi, 2001, Design of analog CMOS integrated circuits, McGraw-Hill, Singapore.
[70]李蒼松,2004,類比積體電路佈局設計課程講義-實作教材,國立雲林科技大學電子工程系。
[71]Springsoft, Inc., http://www.springsoft.com.tw/.
[72]L. L. Chi, J. C. Chou, W. Y. Chung, T. P. Sun, S. K. Hsiung, 2000, “Study on extended gate field effect transistor with tin oxide sensing membrane”, Materials Chemistry and Physics, vol. 63, pp. 19-23.
[73]R. Y. MA, 2006, Design and implementation of front-end integrated circuit for differential capacitance sensor, Institute of Electrical Engineering, National Chi Nan University, Master Thesis.
[74]H. C. G. Ligtenberg, J. G. M. Leuveld, 1987, “ISFET-based measuring device and method for correcting drift”, United States Patent, Patent Number: 4,701,253, Date of Patent: October 20.
[75]S. Casans, A. E. Navarro, D. Munoz, E. Castro, A. Baldi, N. Abramova, 2003, “Novel voltage-controlled conditioning circuit applied to the ISFETs temporary drift and thermal dependency”, Sensors and Actuators B, vol. 91, pp. 11-16.
[76]S. Casans, D. R. Munoz, A. E. Navarro, A. Salazar, 2004, “ISFET drawbacks minimization using a novel electronic compensation”, Sensors and Actuators B, vol. 99, pp. 42-49.
[77]S. Jamasb, 2004, “An analytical technique for counteracting drift in ion- selective field effect transistors (ISFETs)”, IEEE Sensors Journal, vol. 4, pp. 795-801.
[78]J. Hendrikse, W. Olthuis, P. Bergveld, 1998, “A method of reducing oxygen induced drift in iridium oxide pH sensors”, Sensors and Actuators B, vol. 53, pp. 97-103.
[79]A. Morgenshtin, L. Sdakov-Boreysha, U. Dinnar, 2004, “Wheatstone-Bridge readout interface for ISFET/REFET applications”, Sensors and Actuators B, vol. 98, pp. 18-27.
[80]C. N. Tsai, 2005, Study on the non-ideal effect of the tin oxide pH sensor and the calibration method, Institute of Electronic Engineering, Chung Yuan Christian University, Master thesis.
[81]陳連春,2006,運算放大器應用設計鐵則,建興出版社,台北縣。
[82]Data sheet, 2001, “LF351-Single Operational Amplifier (JFET)”, Fairchild Semiconductor Corporation.
[83]李博明、唐經洲,2007,VLSI設計概論/實論,高立圖書有限公司,台北縣。
[84]S. Y. Liu, 2004, Study on the preparation, measurement and readout circuit of the bio-medicine sensor by the sputtering of ruthenium, Institute of Electronic Engineering, National Yunlin University of Science and Technology, Master Thesis.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔