跳到主要內容

臺灣博碩士論文加值系統

(44.192.48.196) 您好!臺灣時間:2024/06/26 03:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:莊智凱
研究生(外文):Chih-Kai Chuang
論文名稱:垂直式巨磁阻之製備與特性研究
論文名稱(外文):The fabrication and characteristics study of Perpendicular Giant Magnetoresistance
指導教授:吳德和
指導教授(外文):Te-Ho Wu
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:光學電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:74
中文關鍵詞:巨磁阻電流平行於膜面耦合效應
外文關鍵詞:giant magnetoresistanceCurrent In-Plane Measur
相關次數:
  • 被引用被引用:0
  • 點閱點閱:168
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文利用磁控直流濺鍍方式來製備RE-TM與[Co/Pd]多層膜混合型之垂直式巨磁阻(Perpendicular Giant Magnetoresistance, pGMR)結構,並改變不同間隔層(Cu)厚度,探討其磁電特性。本研究主要利用交替式梯度測磁儀(Alternating Gradient Magnetomete, AGM)、異常霍爾效應量測(Extraordinary Hall Effect, EHE)和電流平行於膜面(Current In-Plane, CIP)量測技術,分別進行磁滯曲線以及磁電特性分析,並作深入探討。
本研究製備結構為Tb16(Fe79Co21)84 (20nm)/Cu (x nm)/[Co (0.3 nm)/Pd (1 nm)]5,在Cu =1.5~2.1 nm時,與另一結構Tb16(Fe79Co21)84/Cu (x nm)/[Co/Pd]10,在Cu =1.5~1.8 nm時,其自由層與固定層磁化皆會出現強耦合現象,隨著間隔層厚度增加,其耦合現象會呈現減弱趨勢。以上兩種系列的結構經過CIP測量,都具有磁阻率變化,並且在Tb16(Fe79Co21)84 (20nm)/Cu (2.2 nm)/[Co (0.3 nm)/Pd (1 nm)]5結構中,具有較小飽和磁化量(Ms=213 emu/cm3)及矯頑場(Hc=82 Oe),若應用於自旋轉移力矩(spin-transfer torques, STT)上,可具有降低寫入電流密度之優點。
The main purpose of this thesis is to fabricate the structures with perpendicular giant magnetoresistance (pGMR), which are composed of RE-TM alloys and [Co/Pd] multilayers.
The structures were made by DC magnetron sputtering. The magnetic characteristics were measured by the alternating gradient magnetometer (AGM), the perpendicular anisotropy constants were measured by Extraordinary Hall Effect (EHE), and the current-in-plane technique was conducted to assess the GMR effect.
In this study, the hysteresis strong-coupling emerges in both the structures TbFeCo (20nm)/Cu (1.5~2.1 nm)/[Co (0.3 nm)/Pd (1 nm)]5 and TbFeCo/Cu (1.5~1.8 nm)/[Co/Pd]10. The coupling strength decays with the increase of the thickness of the space layer.
In this study the structures of perpendicular giant magnetoresistance with explicit magnetoresistance ratio by CIP measurement were successfully fabricated. For the structure of TbFeCo (20 nm)/Cu (2.2 nm)/[Co (0.3 nm)/Pd (1 nm)]5,the improvement of smaller saturated magnetization (Ms=213 emu/cm3) and coercivity (Hc=82 Oe) was obtained.
If we apply the spin transfer torques (STT) and it can to acquire the advantage of lowering the current density.
中文摘要 ----------------------------------------------------------------------------- i
英文摘要 ----------------------------------------------------------------------------- ii
誌謝 ----------------------------------------------------------------------------- iii
目錄 ----------------------------------------------------------------------------- iv
表目錄 ----------------------------------------------------------------------------- vi
圖目錄 ----------------------------------------------------------------------------- vii
一、 緒論----------------------------------------------------------------------- 1
1.1 前言----------------------------------------------------------------------- 1
1.2 論文架構----------------------------------------------------------------- 4
二、 理論背景----------------------------------------------------------------- 5
2.1 磁阻簡介----------------------------------------------------------------- 5
2.1.1 常磁阻效應(ordinary magnetoresistance)--------------------------- 5
2.1.2 異向性磁阻(Anisotropic Magnetoresistance)---------------------- 7
2.1.3 巨磁阻-------------------------------------------------------------------- 10
2.2 Ruderman-Kittel-Kasuya-Yosida (RKKY)效應-------------------- 13
2.3 異常霍爾效應----------------------------------------------------------- 15
三、 實驗儀器與方法-------------------------------------------------------- 16
3.1 薄膜濺鍍系統----------------------------------------------------------- 17
3.2 交變梯度磁強計-------------------------------------------------------- 18
3.3 多功能磁滯曲線偵測儀----------------------------------------------- 19
3.4 電流平行於膜面電阻測量法(Current In-Plane Measurement)-- 21
四、 實驗結果與討論-------------------------------------------------------- 22
4.1 不同間隔層厚度與自由層層數對pGMR之磁特性影響-------- 24
4.1.1 垂直式巨磁阻之強耦合效應----------------------------------------- 25
4.1.2 垂直式巨磁阻之弱耦合效應----------------------------------------- 34
4.2 不同間隔層厚度與自由層層數對pGMR之電特性影響------- 46
4.3 不同自由層對pGMR之磁、電特性影響------------------------- 58
五、 結論----------------------------------------------------------------------- 60
六、 未來展望----------------------------------------------------------------- 61
參考文獻----------------------------------------------------------------- 62
[1]S. Fukami,H. Honjo, T. Suzuki, and N. Ishiwata,“Low write-current magnetic random access memory cell with anisotropy-varied free layers”, Journal of Applied Physics 104, 113901 (2008)
[2]S. Bae,S. Zurn,W. F. Egelhoff, P. J. Chen,L. Sheppard,E. J. Torok,and J. H. Judy, “Fabrication and Thermal–Chemical Stability of Magnetoresistive Random-Access Memory Cell”, IEEE Transactions on Magnetics 37, 6(2001)
[3]I. C. Infante, V. Laukhin, F. Sánchez , J. Fontcuberta, O. Melnikov, O. Yu Gorbenko, and A. R. Kaul, “Anisotropic magnetoresistance in epitaxial(110) manganite films”, Journal of Applied Physics 99, 08C502 (2006)
[4]S. V. Karthik,Y. K. Takahashi,T. Ohkubo,K. Hono,S. Ikeda,and H. Ohno, “Transmission electron microscopy investigation of CoFeB/MgO/CoFeB
pseudospin valves annealed at different temperatures”, Journal of Applied Physics 106, 023920 (2009)
[5]D. D. Djayaprawira, K. Tsunekawa, M. Nagai, H. Maehara, S. Yamagata, N. Watanabe, S. Yuasa, Y. Suzuki and K. Ando, 230% room-temperature magnetoresistance in CoFeB/MgO/CoFeB magnetic tunnel junctions, Applied Physics Letters 86, 092502(2005).
[6]Keiichi Nagasaka, “CPP-GMR technology for magnetic read heads of future high-density recording systems”, Journal of Magnetism and Magnetic Materials 321,pp. 508– 511 (2009)
[7]S.N. Piramanayagam, and K. Srinivasan, “Recording media research for future hard disk drives”, Journal of Magnetism and Magnetic Materials 321 ,pp.485– 494(2009)
[8]鄭振東,實用磁性材料,全華科技圖書股份有限公司,台北(1999)
[9]盧志權,”磁阻效應原理及應用”,中華民國磁性技術學會會訊,Vol. 19,3卷(1999)。
[10]M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff,
P. EtiEtienne,G. Creuzet, A. Friederich, and J. Chazelas, “Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices”, Physical Review Letters 61, pp.2472–2475 (1988)
[11]P. Bruno, “Theory of interlayer magnetic coupling”, Physical Review B 5252,pp.411-439 (1995)
[12]M. A. Rudrman,and C. Kittel, “Indirect exchange coupling of nuclear magnetic moments by conduction electrons”, Phys. Rev.96, 96,pp.99-102 (1954).
[13]焦正宽,磁电子学第三章,浙江大学出版社,民國九十四年十月。
[14]M. T. Johnson, S. T. Purcell, N. W. E. McGee, R. Coehoorn, J. aan de Stegge, and W. Hoving, “Structural dependence of the oscillatory exchange interaction across Cu layers”, Physical Review Letters 68, pp.2688 - 2691 (1992)
[15]J. Unguris, R.J. Celotta,and D.T. Pierce, “Oscillatory magnetic coupling in Fe/Ag/Fe(100) sandwich structures”, Journal of Magnetism and Magnetic Materials 127,pp.205-213 (1993)
[16]J. Unguris, R. J. Celotta, and D. T. Pierce, “Determination of the Exchange Coupling Strengths for Fe/Au/Fe”, Physical Review Letters 79,pp. 2734 - 2737 (1997)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top