(3.238.96.184) 您好!臺灣時間:2021/05/18 15:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:陳建宏
研究生(外文):Jian_hung Chen
論文名稱:科學探究的數位學習環境:收集資料、產生假設與假設檢查之訓練
論文名稱(外文):Computer-assisted learning environment for scientific inquiry: the training of data gathering, hypothesis generation, and hypothesis testing
指導教授:黃永廣黃永廣引用關係
指導教授(外文):Wing-Kwong Wong
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:資訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:70
中文關鍵詞:數位學習
外文關鍵詞:Computer-assisted learning
相關次數:
  • 被引用被引用:6
  • 點閱點閱:386
  • 評分評分:
  • 下載下載:89
  • 收藏至我的研究室書目清單書目收藏:3
科學探究方法對於各種學術領域的學習而言是重要而且基本的技巧,現今的中學標準課程認定掌握科學探究技巧為共同的目標,但是過去研究文獻都指出學生做科學探究作業時仍然遭遇許多困難。本研究設計一個稱為InduLab的輔助科學探究的數位學習環境,讓學生能夠自行實驗並收集資料、提出假設去解釋實驗資料與檢查假設是否符合實驗資料。為了縮短學習時間及增加學習成效,我們設計一個程序去引導學生進行歸納推理並迴避偏誤,我們對小學五年級學生進行實驗來評估這程序。實驗結果顯示,學生使用InduLab的輔助下進行246作業可以有效率的避免歸納推理中的行為偏誤,並可能使他們從中習得科學探究的能力。
Tasks of scientific inquiry involve important and fundamental skills needed for successful learning in many academic fields. Acquisition of scientific inquiry skills is now listed as a goal in secondary school curriculum. However, past research has pointed out that students still encounter many difficulties in doing scientific inquiry tasks. This research designs a computer-assisted learning environment called InduLab for training students in scientific inquiry. Students can perform their own experiments and gather data, generate hypotheses to interpret the experimental data and to test whether each hypothesis is consistent with the experimental data. In order to shorten learning time and increase learning effectiveness, we have designed a procedure to guide students to avoid bias behavior in inductive inferences. We ran an experiment to assess the procedure for fifth grade students. Experimental results indicate that learners, with InduLab, did a 2-4-6 inductive task efficiently by avoiding common mistakes, which might lead them to acquire the skills of scientific inquiry.
中文摘要----------------------------------------------------------- i
英文摘要----------------------------------------------------------- ii
致謝--------------------------------------------------------------- iii
目錄--------------------------------------------------------------- iv
表目錄------------------------------------------------------------- vi
圖目錄------------------------------------------------------------- vii
一、 緒論------------------------------------------------------- 1
1.1 研究動機與目的--------------------------------------------- 1
1.2 電腦輔助學習的發展----------------------------------------- 3
1.3 InduLab 平台的發展與設計方針------------------------------- 5
1.4 研究問題--------------------------------------------------- 7
1.5 論文架構--------------------------------------------------- 7
二、 文獻探討--------------------------------------------------- 8
2.1 歸納推理--------------------------------------------------- 8
2.2 鷹架原理--------------------------------------------------- 10
2.3 電腦輔助學習環境的設計經驗法則----------------------------- 11
三、 InduLab 2009 系統開發、介紹與操作說明---------------------- 12
3.1 開發工具簡介----------------------------------------------- 12
3.2 InduLab 2009系統架構--------------------------------------- 13
3.3 InduLab 2009物件模組化與程式架構--------------------------- 14
3.4 InduLab 2009所提供教材------------------------------------- 15
3.5 系統流程--------------------------------------------------- 16
3.6 歸納推理三階段的介面設計----------------------------------- 18
3.6.1 實驗介面--------------------------------------------------- 19
3.6.2 產生假設介面----------------------------------------------- 23
3.6.3 假設檢查介面----------------------------------------------- 24
3.7 系統結束與詢問--------------------------------------------- 27
四、 實驗與成效分析--------------------------------------------- 29
4.1 實驗說明--------------------------------------------------- 29
4.2 實驗組與對照組的系統差別----------------------------------- 29
4.2.1 對照組的固定引導流程--------------------------------------- 30
4.2.2 實驗組的動態引導流程--------------------------------------- 33
4.3 實驗的成效------------------------------------------------- 37
4.4 學生選擇假設----------------------------------------------- 37
4.5 學生進行驗證的策略----------------------------------------- 39
4.6 對照組與實驗組的歸納推理流程的差異------------------------- 40
4.7 結論------------------------------------------------------- 46
五、 設計經驗探討----------------------------------------------- 47
5.1 視覺流程--------------------------------------------------- 47
5.2 介面轉換--------------------------------------------------- 47
5.3 減少使用MessageDialog-------------------------------------- 48
5.4 考慮操作者的操作能力--------------------------------------- 48
5.5 吸引學生注意文字,不要強制他們閱讀------------------------- 49
5.6 用色與配色------------------------------------------------- 50
5.7 InduLab2010的預想設計-------------------------------------- 51
5.7.1 新假設介面------------------------------------------------- 51
5.7.2 新實驗介面------------------------------------------------- 53
5.8 總結------------------------------------------------------- 56
參考文獻 --------------------------------------------------- 57
中文部份:
[01] 陳亦媛,2003,兒童歸納推理能力探究-影響兒童證據與假設協調能力的可能原因與解決之道,碩士論文,台灣大學。
[02] 陳志銘,2004,人工智慧應用於網路學習上的現況與發展趨勢,教育研究月刊,pp. 27-41。
[03] 陳淑敏,1994,Vygotsky的心理發展理論和教育,國立屏東師院學報,第七期,頁119-144。
[04] 黃永廣、連韻文、吳昭容、蘇順隆、殷聖楷、楊晰勛、陳亦媛,2004,訓練歸納與學習幾何概念的數位環境之鷹架輔助,GCJCE,第二卷,第二期,pp31-43.
[05] 黃永廣、連韻文、吳昭容、鄭英豪,2005,數位學習國家型計畫期中進度報告。
[06] 劉宜芳,2007,兒童在發現式數位學習介面下的規則發現,碩士論文,國立台北教育大學。
[07] 殷聖楷,2004,數學實驗與歸納的數位學習環境,國立雲林科技大學電子工程系碩士班論文,未出版,雲林。
[08] 胡志偉、胡志偉、陳德懷、曾志朗,2001,心理學理論在學習科技上的應用,國立政治大學心理系編,「e-世代心理學」(pp. 31-54),台北市:桂冠書局。
[09] 張春興,2002,教育心理學,台北:東華書局。
[10] 吳庭瑜,1999,電腦輔助系統角色與解釋對歸納推理技能的影響,國立交通大學工業工程與管理研究所,未出版之碩士論文。
[11] 吳庭瑜、吳明樺和洪瑞雲,1998,合作學習、解釋及發問架構提示對歸納推理表現的影響,中華心理學刊,第40 期,頁117-136。
[12] 戴錦秀,2002,國小五年級學生使用電腦軟體GSP學習三角形面積成效之研究,國立高雄師範大學數學研究所碩士論文。
[13] 李俊岳,2002,科學探索式的網路學習環境,國立雲林科技大學電子與資訊碩士班論文。
[14] 陳鼎叡,2008,訓練歸納能力之幾何輔助學習環境,國立雲林科技大學電子工程碩士班論文
[15] Hu, J. W., Chan, T. W., Tzeng, J.L. (2001). 心理學理論在學習科技上的應用。國立政治大學心理系編,「e-世代心理學」(pp. 31-54)。台北市:桂冠書局。
[16] 朱湘吉,教學科技發展的新紀元-新教學科技期,教學科技與媒體,第五期(1992),pp29-39。
[17] 林生傳,新教學理論與策略,第二版,pp171-234。
[18] 鍾樹椽,互動性在電腦輔助教學設計上之重要性,教學科技與媒體,第12期,pp15-20。
[19] 陳國鑫,資訊時代的讀書方法,第二版,pp16-42。
[20] 田載今、李海東,2006,直觀實驗•邏輯推理•幾何證明的教育價值,人教網。

英文部份:
[01] Baddeley, A. D. & Hitch, G. J. (1974). Working memory. In G. Bower (Ed.), Advances in learning and motivation (Vol. 8, pp. 47-90). New York: Academic Press.
[02] Bruner, Jerome S. The act of discovery. (1961). Harvard Educational Review. 31, 21-32.
[03] Capon, A., Handley, S. & Dennis, I. (2003). Working memory and reasoning: An individual differences perspective. Thinking and Reasoning, 9(3), 203-244.
[04] Chen, Z. & Klahr, D. (1999). All other things being equal: Children’s acquisition of the control variable strategy. Child Development, 70, 1098-1120.
[05] Chi, M. T. H. (1997). Creativity: Shifting across ontological categories flexibly. In T. B. Ward, S. M. Smith, & J.Vaid, (Eds.), Creative thought: An investigation of conceptual structures and processes, 209-234. Washington, DC: American Psychological Association.
[06] Evans, J. St. B. T. (1989). Bias in human reasoning: causes and consequences. London: Lawrence Erlbaum Associates.
[07] Klahr, D., Fay, A. & Dunbar, K. (1993). Heuristics for scientific experimentation: A developmental study. Cognitive Psychology, 25, 111-146.
[08] Kuhn, D. (1989). Children and adults as intuitive scientists. Psychological Review, 96, 647-689.
[09] Kuhn, D., Garcia-Mila, M., Zohar, A. & Anderson, C. (1995). Strategies of knowledge acquisition. Monographs of the Society for Research in Child Development, Serial No. 245, 60(40), 1-128.
[10] Kuhn, D. & Phelps, E. (1982). The development of problem-solving strategies. In H. Reese (Ed.), Advances in child development and behavior(Vol. 17, pp1-44). New York: Academic Press.
[11] Kuhn, T. S. (1970). The structure of scientific revolutions. (2nd ed.). Chicago: University of Chicago Press.
[12] Kyllonen, P. C. & Christal, R. E. (1990). Reasoning ability is (little more than) working-memory capacity ?! Intelligence, 14, 389-433.
[13] Oaksford, M. & Chater, N. (1994). Another look at eliminative and enumerative behavior in a conceptual task. European Journal of Cognitive Psychology, 6(2), 149-169.
[14] Platt, J. R. (1964). Strong inference. Science, 146, 347-353.
[15] Siegler, R. S. & Liebert, R. M. (1975). Acquisition of formal scientific reasoning by 10- and 13- year olds: Designing a factorial experiment. Developmental Psychology, 11, 401-402.
[16] Schauble, L. (1990). Belief revision in children: The role of prior knowledge and strategies for generating evidence. Journal of Experimental Child Psychology, 49, 31-57.
[17] Shauble, L. (1996). The development of scientific reasoning in knowledge-rich contexts. Developmental Psychology, 32, 102-119.
[18] Tukey, D. D. (1986). A philosophical and empirical analysis of subjects’ modes of inquiry in Wason’s 2-4-6-task. Quarterly Journal of Experimental Psychology, 38A, 5-33.
[19] Tweney, R. D., Doherty, M. E., Worner, W. J., Pliske, D. B., Mynatt, C. R., Gross, K. A., & Arkkelin,D.L. (1980). Strategies of rule discovery in an inference task. Quarterly Journal of Experimental Psychology,32,109-123.
[20] Wagner, C. (1996). Creative behavior through basic inferences: [21]Evidence from person-computer interactions. Journal of Creative Behavior, 30(2), 105-125.
[22] Wason, P. C. (1960). On the failure to eliminate hypotheses in a conceptual task. Quarterly Journal of Experimental Psychology, 12, 129-140.
[23] Wason, P. C. (1966). Reasoning. In B. M. Foss (Ed.), New horizons in psychology (pp. 135-151). Harmondsworth, Middlesex, England: Penguin.
[24] Wason, P. C. (1977). On the failure to eliminate hypotheses – a second look. In Johnson-Laird, P. N., & Wason, P. C. (Eds). Thinking: Readings in cognitive science. (pp. 293-306). Cambridge, NY: Cambridge University Press.
[25] Holland, John H, Holyoak, Keith J. Nisbett, Richard E. and Thagard Paul R. (1989). Induction: Processes of Inference, Learning, and Discovery. Cambridge, MA, USA: The MIT Press.
[26] Vygotsky, L. S. 1978. Mind in society: The development of higher psychological processes. Cambridge, MA: Harvard University Press. xi, 159 pages. 0674576284.
[27] Rogoff, B. (1990). Apprenticeship in thinking: Cognitive development in social context. New York: Oxford University Press.
[28] Guzdial, M. (1994). Software-realized scaffolding to facilitate programming for science learning. Interactive Learning Environments, 4(1), 1-44.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top