(3.238.130.97) 您好!臺灣時間:2021/05/13 22:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:孫志豪
研究生(外文):Chih-Hao Sun
論文名稱:混沌現象於同步磁阻馬達之研究
論文名稱(外文):The Study of Chaotic Phenomenon for Synchronous Reluctance Motor
指導教授:江換鏗
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:電機工程系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:71
中文關鍵詞:李阿普諾夫指數羅斯穩定準則混沌現象同步磁阻馬達
外文關鍵詞:Routh-Hurwitz stabilityLyapunov exponentSynchronous reluctance motorChaotic phenomenon
相關次數:
  • 被引用被引用:0
  • 點閱點閱:150
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出混沌理論應用於同步磁阻馬達的研究,混沌是一種看似混亂然而卻有規律性的現象,而導致混沌狀態的根本原因是系統內部的非線性因素,對於系統參數及初始值的變化影響很大,然而每顆馬達的參數都有所不同,相同的方法套用在不同的系統不見得能得到混沌的現象發生。因此首先建立同步磁阻馬達的混沌模型,藉由模型得到平衡點及特徵方程式,利用羅斯穩定準則(Routh-Hurwitz stability criterion)得到控制器的參數,且搭配李阿普諾夫指數(Lyapunov exponent)的計算來得到初始值,並判定系統是否處於混沌狀態。本文利用Matlab/Simulink軟體模擬,再配合Dspace公司生產之DS1104控制系統模組做為控制法則的運算工具,加上自製之硬體電路週邊,以實作結果來驗證所提之方法。
This thesis presents the research of chaotic phenomenon for the synchronous reluctance motor. Chaotic phenomenon looks like confused but it is regular. Chaotic phenomenon happens due to nonlinear characteristic of the systems. System parameters and initial value variations cause the output dramatically. Dissimilar system need not cause chaotic phenomenon in the same method because every motor’s parameters are different.. We establish the synchronous reluctance motor chaos model, the equilibrium points and characteristic equation by motor model. We utilize the Routh-Hurwitz stability criterion to obtain speed controller parameters. The initial value is determined by Lyapunov exponent to decide the chaotic phenomenon. We simulate it by using Matlab/Simulink software.The proposed method is implemented by using DS1104 processor board. Simulation and experiment results show that the proposed theory is correct.
中文摘要 i
英文摘要ii
誌謝iii
目錄iv
表目錄vi
圖目錄vii

第一章 緒論1
1.1研究動機1
1.2研究目的1
1.3內容大綱2

第二章 同步磁阻馬達與直接轉矩控制3
2.1磁阻馬達產生扭矩原理3
2.2同步磁阻馬達構造簡介4
2.3同步磁阻馬達之數學模式5
2.3.1座標轉換5
2.3.2理想的馬達數學模式6
2.4直接轉矩控制8

第三章 理論回顧9
3.1混沌理論9
3.2羅倫茲系統9
3.3李阿普諾夫指數14
3.3.1李阿普諾夫指數的數學定義14
3.3.2李阿普諾夫指數計算法15
3.3.3應用實例15


第四章 混沌參數設計16
4.1混沌系統馬達模型16
4.2平衡點17
4.3特徵值19
4.3.1平衡點(I)之特徵值20
4.3.2 平衡點(II)之特徵值21
4.3.3 平衡點(III)之特徵值23
4.3.4 平衡點(IV)之特徵值24
4.3.5平衡點(V)之特徵值25

第五章 同步磁阻馬達控制系統27
5.1空間向量脈波調變原理簡介27
5.2系統設計與軟體應用簡介29
5.2.1DS1104方塊圖30
5.2.2變頻器驅動電路31
5.2.3軟體應用部分32

第六章 模擬與實驗結果34

第七章 結論68
參考文獻69
作者簡介71
[1]A. Kaga, Y. Anazawa, H. Akagami, S. Watabe and M. Makino, “A research of efficiency improvement by means of wedging with soft ferrite in small induction motors,” IEEE Trans. Magnetics, Vol. 18, pp. 1547-1549, Nov. 1982.
[2]A. Wallace, J. Parker and G. Dawson, “Slip control for LIM propelled transit vehicles,” IEEE Trans. Magnetics, Vol. 16, pp. 710-712, Sept. 1980.
[3]E. AkIPnar, R. E. Trahan and A. D. Nguyen, “Modeling and analysis of closed-loop slip energy recovery induction motor drive using a linearization technique,” IEEE Trans. Energy Conversion, Vol. 8, pp. 688-697, Dec. 1993.
[4]M. A. Badr, A. I. Alolah and A. F. Almarshood, “Transient performance of series connected three phase slip-ring induction motors,” IEEE Trans. Energy Conversion, Vol. 13, pp. 305-310, Dec. 1998.
[5]Z. Li, B. Park, Y. H. Joo, B. Zhang and G. Chen, “Bifurcations and chaos in a permanent-magnet synchronous motor,” IEEE Trans. Circuits Syst. I, Vol. 49, pp. 383-387, Mar. 2002.
[6]K. T. Chau, J. H. Chen, C. C. Chan and Q. Jiang, “Subharmonics and chaos in switched reluctance motor drives,” IEEE Trans. Energy Conversion, Vol. 17, pp. 73-78, Mar. 2002.
[7]Y. Gao and K. T. Chau, “Hopf bifurcation and chaos in synchronous reluctance motor drives,” IEEE Trans. Energy Conversion, Vol. 19, pp. 296-302, June 2004.
[8]M. Babaei, J. Nazarzadeh and J. Faiz, “Nonlinear feedback control of chaos in synchronous reluctance motor drive systems,” IEEE International Conference on Industrial Technology, pp. 1-5, April. 2008.
[9]林國樺, “整數階與分數階電動機系統混沌同步與混沌控制”,國立交通大學,碩士論文,2005。
[10]T. J. E. Miller, Switched reluctance motors and their control, Oxford Science Publications, 1993.
[11]P. C. Krause, Analysis of electric machinery, McGRAW-HILL, 1986.
[12]劉昌煥,交流電機控制向量控制與直接轉矩控制原理,東華書局股份有限公司,2003。
[13]E. N. Lorenz, “Deterministic nonperiodic flow,” Journal of the Atmospheric Sciences, Vol. 20, pp. 130-141, 1963.
[14]T. Y. Li and J. A. York, “Period three implies chaos,” American Mathematical Monthly, Vol. 82, pp. 985-992, 1975.
[15]M. J. Feigenbaum, “Universal behavior in nonlinear system,” Los Alamos Sci, pp. 4-27, 1980.
[16]D. W. Liao and W. Q. Zhu, “Research on lyapunov exponents algorithm and its application,” Journal of Wenzhou Vocational & Technical College, Vol. 8, pp. 39-41, 2008.
[17]A. Wolf, J. Swift, H. Swinney and J. Vastano “Determining lyapunov exponents from a time series,” Physica D: Nonlinear Phenomena, Vol. 16, pp. 285-317, 1985.
[18]宋茂全,“無感測器同步磁阻馬達向量控制”,國立雲林科技大學,碩士論文, 1999。
[19] DS1102 User’s Guide, Floating-Point Controller Board, dSPACE, Hardware Reference.
[20] 蔡坤隍,“以空間向量脈寬調變為基礎的同步式磁阻馬達之速度控制”,國立
雲林科技大學,碩士論文,1998。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔