(3.235.191.87) 您好!臺灣時間:2021/05/13 04:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:吳偉傑
研究生(外文):Wei-jie Wu
論文名稱:應用數位影像關係法於高應變區域探討與微試件變形量測
論文名稱(外文):High Strain Area and Microsample for Deformation Measurement by Using Digital Image Correlation Method
指導教授:黃順發黃順發引用關係
指導教授(外文):Shun-fa Hwang
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:機械工程系碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:98
中文關鍵詞:應變量測高應變區域微拉伸實驗數位影像關係法
外文關鍵詞:thin tensile testdigital image correlationstrain measuringhigh strain area
相關次數:
  • 被引用被引用:6
  • 點閱點閱:435
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:52
  • 收藏至我的研究室書目清單書目收藏:0
數位影像關係法(Digital Image Correlation,DIC)是ㄧ全區域、非接觸且非破壞的應變量測方法,這個方法是對待測物變形前、後的表面進行影像的擷取,針對變形前後的影像指定欲搜尋的範圍,求其位移及應變,本文使用適應性實數基因演算法(Adaptive Real-parameter Genetic Algorithm,ARGA)進行最佳化的求解。本研究利用理想實驗驗證程式的準確性,忽略實驗過程中CCD感測器與光源產生的誤差。以貼附應變規之試片進行拉伸試驗,藉由穩定的光源(Light)、適當的特徵斑點(Speckle Pattern)提升實驗品質。拉伸過程中應變規所讀得數值為一依據,驗證程式求得應變數值,是否能有相同趨勢。接著對具圓孔大試片進行拉伸實驗,針對圓孔周圍高應變區域進行量測,探討圓孔周圍應變的分佈,最後以MEMS(Micro-Electro-Mechanical System)配合電鑄製程製作微試片,並進行銅微試片的拉伸。經由本文的實驗結果,證明DIC的量測方式能準確的求得高應變梯度區域其應變的分佈趨勢,並應用於破壞的預測。同時求得銅微試件的楊氏係數約為97.9GPa,驗證DIC分析系統應用於微尺度機械性質量測上的可行性。
Digital image correlation (DIC) is a whole-field, non-contact and non-destructive strain measuring method. This method captures the surface of a sample before and after the deformation to find displacement and strain of a specific subset region. In this work, an adaptive real-parameter genetic algorithm is proposed to search the optimum solutions. An ideal experiment without the error of the CCD sensor and lighting is used to verify the accuracy of this method. Uniaxial tensile tests of specimens adhered with strain gauge are also executed, and stable lighting and random speckle pattern are provided to ensure the experiment quality. The value of the strain gauge can be used to verify the accuracy of the program on the uniaxial tensile test. Then, the specimen with a central circular hole is also tested and the strain distribution especially around the high strain area is measured by the present method. Finally, fabricate the micro specimen, micro-electro-mechanical system (MEMS) is adopted to fabricate the micro specimen for uniaxial tensile tests. In this study, the results indicate that strain distribution around the high strain area could be reasonably measured, and fracture region of the specimen could be predicted. At the same time, we could find that the Young’s modulus of Cu thin specimen is around 97.9GPa. The feasibility of DIC could be verified during these tests.
中文摘要----------------------------------------------------------------------------------------------i
英文摘要----------------------------------------------------------------------------------------------ii
致謝----------------------------------------------------------------------------------------------------iii
目錄----------------------------------------------------------------------------------------------------iv
表目錄----------------------------------------------------------------------------------- -------------vi
圖目錄-------------------------------------------------------------------------------------------------vii
符號說明----------------------------------------------------------------------------------------------ix

一、前言-----------------------------------------------------------------------------------------------1
1.1 研究背景與動機--------------------------------------------------------------------1
1.2 文獻回顧-----------------------------------------------------------------------------2
1.2.1 數位影像關係法------------------------------------------------------------2
1.2.2 基因演算法------------------------------------------------------------------3
1.2.3 微拉伸測試------------------------------------------------------------------4
1.3 研究目的-----------------------------------------------------------------------------5
1.4 論文架構-----------------------------------------------------------------------------6
二、理論基礎----------------------------------------------------------------------------------------7
2.1 數位影像關係法--------------------------------------------------------------------7
2.1.1 數位影像簡介---------------------------------------------------------------7
2.1.2 影像前處理------------------------------------------------------------------7
2.1.3 子影像的變形理論與假設------------------------------------------------8
2.1.4 影像內插法----------------------------------------------------------------10
2.1.5 影像之相關性-------------------------------------------------------------11
2.1.6 灰度值之平移處理-------------------------------------------------------11
2.2 基因演算法------------------------------------------------------------------------12
2.2.1 基因演算法基本架構----------------------------------------------------13
2.2.2 定義目標函數與適應函數----------------------------------------------14
2.2.3 演化機制-------------------------------------------------------------------15
2.2.4 控制參數-------------------------------------------------------------------16
2.2.5 改良型基因演算法-------------------------------------------------------18
2.3 ARGA與DICM的結合---------------------------------------------------------21
三、實驗方法與步驟-------------------------------------------------------------------------26
3.1 程式驗證---------------------------------------------------------------------------26
3.1.1 理想實驗-------------------------------------------------------------------26
3.2 大試片拉伸實驗------------------------------------------------------------------26
3.2.1 大試片製作----------------------------------------------------------------27
3.2.2 實驗步驟-------------------------------------------------------------------31
3.3 具圓孔大試片拉伸實驗---------------------------------------------------------32
3.4 微試片拉伸實驗------------------------------------------------------------------33
3.4.1 微試片設計與製作-------------------------------------------------------33
3.4.2 微試片特徵製做----------------------------------------------------------39
3.4.3 夾具設計與實驗步驟----------------------------------------------------40
四、結果討論----------------------------------------------------------------------------------43
4.1 程式驗證---------------------------------------------------------------------------43
4.2 大試片之拉伸實驗---------------------------------------------------------------43
4.3 具圓孔大試片拉伸實驗---------------------------------------------------------53
4.4 銅微試件拉伸實驗---------------------------------------------------------------68
五、結論與建議-------------------------------------------------------------------------------82
5.1 結論---------------------------------------------------------------------------------82
5.2 建議---------------------------------------------------------------------------------83

參考文獻----------------------------------------------------------------------------------------84
個人簡歷----------------------------------------------------------------------------------------87
[1]W.H. Peters, and W. F. Ranson,1982,“Digital Image Techniques on Experimental Stress Analysis” , Optical Engineering, Vol. 21, No. 3, p427.
[2]M. A. Sutton, W. J. Wolters, W. H. Peters, W. F. Ranson, and S. R. McNeill,1983, “ Determination of Displacements Using an Improved Digital Image Correlation Method”, Image and Vision Computing, Vol. 1, No. 3, p133.
[3]T. C. Chu, W. H. Peters, M. A. Sutton, S. R. McNeil, 1985, “Application of Digital Image Correlation to Experimental Mechanics”, Image and Vision Computing, Vol. 25, No. 3, p232.
[4]M. A. Sutton, M. Cheng, W. H. Peters, Y. J. Chao, and S. R. McNeil,1986, “Application of an Optimized Digital Correlation Method to Planar Deformation Analysis”, Image and Vision Computing, Vol. 4, No. 3, p143.
[5]H. Lu, P. D. Cary, 2000, “Deformation Measurements by Digital Image Correlation: Implementation of a Second-Order Displacement Gradient”, Experimental Mechanics, Vol. 40, No. 4, p393.
[6]Y. Wang, A. M. Cuitino, 2002, “Full-Field Measurements of Heterogeneous Deformation Patterns on Polymetric Foams Using Digital Image Correlation”, International Journal of Solids and Structures, Vol. 39, p3777.
[7]D. Lecomptea, A. Smitsb, Sven Bossuytb, H. Solb, A.M. Habraken, 2006,“Quality Asessment of Speckle Patterns for Digital Image Correlation”, Optics and Lasers in Engineering , 44 , p1132.
[8]L.B. Meng, G.C Jin*, X.F. Yao , 2007, ”Application of Iteration and Finite Element Smoothing Technique for Displacement and Strain Measurement of Digital Speckle Correlation”, Optics and Laser in Engineering, 45,p57.
[9]H. Haddadi, S. Belhabib, 2008,“Use of Rigid-Body Motion for The Invertigation
and Estimation of The Measurement Errors Related to Digital Image Correlation
Technique” ,Optics and Lasers in Engineering , 46,p185.
[10]S. Choi, S. P. Shah, 1997, “ Measurement of Deformations on Concrete Subjected to Compression Using Image Correlation” ,Experimental Mechanics, Vol. 37, No. 3, p307.
[11]F. Lagattu, J. Brillaud, and M. C. Lafarie-Frenot, 2004, “High Strain Gradient Measurements by Using Digital Image Correlation Technique”, Materials Characterization, Vol. 53, p17.
[12]陳天賜,2003,應用數位影像關係法於微試件之測試,國立成功大學機械
工程研究所。
[13]江偉傑,2004,數位影像法於變形量測,國立雲林科技大學機械工程研究所。
[14]王厚鈞,2005,基因演算法應用於數位影像關係法及薄膜變形量測,國立
雲林科技大學機械工程研究所。
[15] S. F. Hwang, and R. S. He, 2006, “Improving Real-Parameter Genetic
Algorithm with Simulated Annealing for Engineering Problem”, Advances in
Engineering Software, Vol. 37, No. 6, p406.
[16]陳柄樺,2005,應用奈米粒子於微試件進行數位影像相關變形量測,國立
成功大學機械工程研究所。
[17]蔡松木,2004,利用數位相機量測裂縫應力集中係數之研究,國立成功大學
土木工程研究所。
[18]陳弘瀚,2007,不同角度光源對數位影像相關法量測研究之影響,國立中興
大學機械工程研究所。
[19] J. P. Leite, and B. H. V. Topping, 1998, “Improved Genetic Operators for
Structural Engineering Optimization”, Advances in Engineering Software, Vol.
29, p529.
[20] O. Hasancebi, and F. Erbatur, 2000, “Evaluation of Crossover Techniques in
Genetic Algorithm Based Optimization Structural Design”, Computers and
Structures , Vol. 78, p435.

[21] Ioannis Chasiotis and Wolfgang G. Knauss, “A New Microtensile Tester for The
Study of MEMS Materials with The Aid of Atomic Force Microscopy”,
Experimental Mechanics,Vol.42, No.1, p51.
[22] Ioannis Chasiotis, Wolfgang G. Knauss, “Mechanical properties of thin
polysilicon films by means of probe microscopy”, Graduate Aeronautical
Laboratories, California Institute of Technology, Pasadena, CA 91125.
[23] M. A. Haque and M. T. A. Saif, 2002,“In-Situ Tensile Testing of Nano-scale
Specimens in SEM and TEM”, Experimental Mechanics, Vol. 42, NO. 1, p123.
[24]李國誌,2002,應用數位影像關係法於微試件變形之量測,國立成功大學
機械工程研究所。
[25] H. Ogawa, K. Suzuki, S. Kaneko, Y. Nakano, Y. Ishikawa, 1997, “Measurements
of Mechanical Properties of Microfabricated Thin Films”, IEEE Sensors Journal, p430.
[26]藍健豪,2007,數位影像關係法於高應變區域探討,國立雲林科技大學機械
工程研究所。
[27]江忠勳,2006,建構一新穎之微拉伸試驗機制以量測次微米尺度薄膜材料之
機械行為,國立中興大學精密工程研究所。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔