(3.230.154.160) 您好!臺灣時間:2021/05/07 18:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:鄭盟潔
研究生(外文):Meng-jie Jheng
論文名稱:分子動力學應用於奈米級功能梯度材料
論文名稱(外文):Application in Functional Gradient Material by Using Molecular Dynamic Simulation
指導教授:黃順發黃順發引用關係
指導教授(外文):Shun-fa Hwang
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:機械工程系碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:98
中文關鍵詞:Morse勢能單顆原子應力粗糙度分子動力學功能梯度材料混合率
外文關鍵詞:MDBDT StressMolecular dynamicFunctional gradient materialMorse potentialRoughnessMix rate
相關次數:
  • 被引用被引用:2
  • 點閱點閱:197
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:28
  • 收藏至我的研究室書目清單書目收藏:0
本研究以分子動力學理論來觀察奈米級功能梯度材料(Functional Gradient Material, FGM)薄膜沉積的物理機制,所模擬的製程為多靶濺鍍製程。本文建立雙靶濺鍍製程模擬,所探討的物理參數包含了FGM層數、入射動能、入射角度及基板溫度。在雙靶濺鍍製程模擬部分建立了FGM薄膜成型機制,藉此達到多靶磁控濺鍍系統之模擬。研究方法先建立雙靶濺鍍物理沉積模型,利用Morse二體勢能計算原子間(Cu-Al)相互的作用力,不同原子間的參數以幾何平均及算術平均計算,其計算過程中採用截斷半徑法及Verlet結合Cell link鄰近表列法增加程式計算的效率。應力分析使用單顆原子應力(Basinski-Duesbery-Taylor Stress, BDT Stress)計算,混和率(Mix rate)則用來觀察FGM的梯度變化,並以三維粗糙度分析程式及均方根(Root-mean-square, RMS)計算做沉積薄膜的粗糙度(Roughness)分析。
由FGM濺鍍製程模擬的結果可知,以FGM薄膜成型機制沉積FGM,能夠有效地建立FGM薄膜,足以來觀察FGM薄膜的物理機制。發現FGM在奈米尺度下,FGM薄膜的殘留應力隨著FGM層數的增加有消除的作用,此外亦發現FGM薄膜沉積有助益薄膜表面平坦化。當增加入射動能從0.5eV至7eV時,能夠逐漸地使薄膜表面平坦化,但卻造成預期中的薄膜應力上升,而10eV過高的入射動能將造成部份Cu原子與Al原子在表面覆蓋層的混合率上升,進而影響FGM的功能。以各種不同入射角度做薄膜沉積,發現在雙靶沉積模式下造成RMS上升的臨界值發生在60度(含)以上,且發現當角度大於60度以上時,其原子的附著能力開始不足,導致濺鍍率開始減弱,而增加些許入射角度有助於沉積原子的側向擴散能力,並藉此緩和入射能量對於基板的衝擊。增加基板溫度雖能夠改善薄膜表面粗糙度,但對於FGM薄膜成型並沒有多大助益。
In this study, we used the molecular dynamic (MD) method to observe the thin film growth of functional graded material (FGM). To create FGM thin film, we simulate magnetron multi-target sputtering by using MD method. During the FGM thin film growth, we discuss the effect of many parameters including FGM layers, incident energy, incident angle and substrate temperature. In the MD simulation, the Morse two-body potential was used to describe the Cu-Al atomic interaction. The parameters for the mixed interactions of Cu-Al were determined by the standard combination rules, i.e., arithmetic mean for lattice parameter, and geometric mean for energy. To increase the efficiency of simulation system, we choose cut-diameter method and Verlet combining Cell link neighbor list to reduce the unnecessary calculation. The BDT stress was used to calculate the residual stress of FGM thin film. And the mix rate was used to observe the gradient variation of FGM thin film. To evaluate the roughness of FGM thin film, Root-mean-square (RMS) and three dimension morphology were used to present these results.
From the simulation results, it indicates that the formula of change time of deposition rate could be used to create the FGM thin film. When the FGM thin films of different layers were created by using different deposition rate, we found that FGM thin film could be used to reduce the residual stress in nano-scale. In addition, the results also indicate that the FGM thin film was benefit to improve the roughness of thin film. In the discussion of incident energy, when increasing the incident energy from 0.5eV to 7eV, it could make the roughness of thin film became smooth, but it also produce high residual stress. Furthermore, when the incident energy was increased to 10eV, it will increase the mix rate of the layers around the surface and result in the disappearing of the function of FGM. From the deposition result of different incident angles, we found that 60 degree could raise the RMS in the dual-target deposition, and we also found that the sputtering yield is reduced when the incident angle increases over 60 degree. Increasing the incident angle could increase the lateral motion ability of incident atoms and reduce the impact from the incident atoms onto the substrate. When the temperature was considered, increasing the temperature could improve the roughness of thin film, but it could not produce more benefit for creating FGM thin film.
中文摘要 ----------------------------------------------------------------------------- i
英文摘要 ----------------------------------------------------------------------------- ii
誌謝 ----------------------------------------------------------------------------- iv
目錄 ----------------------------------------------------------------------------- v
表目錄 ----------------------------------------------------------------------------- vii
圖目錄 ----------------------------------------------------------------------------- viii
符號說明 ----------------------------------------------------------------------------- x
一、 緒論----------------------------------------------------------------------- 1
   1.1 前言 1
   1.2 分子動力學理論文獻回顧 2
   1.3 研究動機與目的 5
   1.4 本文架構 5
二、 分子動力學相關理論-------------------------------------------------- 6
2.1 MD基礎理論------------------------------------------------------------ 6
2.2 原子間勢能函數-------------------------------------------------------- 7
2.2.1 二體勢能函數----------------------------------------------------------- 8
2.2.2 多體勢能函數----------------------------------------------------------- 9
2.3 邊界條件----------------------------------------------------------------- 11
2.3.1 週期邊界條件----------------------------------------------------------- 11
2.3.2 熱邊界-------------------------------------------------------------------- 15
2.4 運動方程式-------------------------------------------------------------- 16
2.4.1 Gear五階預測修正法-------------------------------------------------- 17
2.4.2 Leap-Frog預測方法---------------------------------------------------- 19
三、 數值計算方法----------------------------------------------------------- 21
3.1 沉積物理模型設定----------------------------------------------------- 21
3.1.1 基板模型設定----------------------------------------------------------- 21
3.1.2 初始位置設定----------------------------------------------------------- 22
3.1.3 初始速度設定----------------------------------------------------------- 22
3.1.4 入射角度設定----------------------------------------------------------- 23
3.2 物理參數與無因次化-------------------------------------------------- 24
3.3 截斷半徑法-------------------------------------------------------------- 25
3.3.1 Verlet鄰近表列法------------------------------------------------------ 27
3.3.2 Cell link鄰近表列法--------------------------------------------------- 29
3.3.3 Verlet結合Cell link鄰近表列法------------------------------------ 30
3.4 MD模擬流程----------------------------------------------------------- 31
3.5 FGM薄膜的沉積控制------------------------------------------------- 33
3.6 薄膜品質評估----------------------------------------------------------- 37
四、 結果與討論-------------------------------------------------------------- 39
4.1 雙靶模擬機制的驗證-------------------------------------------------- 39
4.2 FGM層數效應---------------------------------------------------------- 41
4.3 基板溫度效應----------------------------------------------------------- 49
4.4 入射動能效應----------------------------------------------------------- 57
4.5 入射角度效應----------------------------------------------------------- 66
五、 結論與建議-------------------------------------------------------------- 77
5.1 結論----------------------------------------------------------------------- 77
5.2 建議與未來展望-------------------------------------------------------- 78
參考文獻 ----------------------------------------------------------------------------- 79
作者與著作 ----------------------------------------------------------------------------- 83
[1]M. Koizumi, 1997, “FGM Activities in Japan”, Composites part B Engineering, Vol. 28, p1.
[2]Y. Kim, J. K. Choi, J. T. Choi and K. H. Auh, 1996, “Effect of Source Gas Composition on the Synthesis of SiC/C Functionally Gradient Materials by CVD”, Materials Letters, Vol. 26, p249.
[3]I. Beinglass, M. Naik, 1998, “CVD Al/PVD Al Integration for Advanced via and Interconnect Technology”, Thin Solid Films, Vol. 320, p35.
[4]Z. M. Yang, Z. G. Zhou and L. M. Zhang, 2003, “Characteristics of Residual Stress in Mo–Ti Functionally Graded Material with a Continuous Change of Composition”, Materials and Engineering A, Vol. 358, p214.
[5]J. O. Li, X. R. Zeng, J. N. Tang and P. Xiao, 2003, “Fabrication and Thermal Properties of a YSZ–NiCr Joint with an Interlayer of YSZ–NiCr Functionally Graded Material”, Journal of Europe Ceramics Society, Vol. 23, p1847.
[6]C. S. Lee, X. F. Zhang, G. Thomas and P. Xiao, 2001, “Novel Joining of Dissimilar Ceramics in the Si3N4–Al2O3 System Using Polytypoid Functional Gradients”, Acta Materialia, Vol. 49, p3775.
[7]G. Jin, M. Takeuchi, S. Honda, T. Nishikawa and H. Awaji, 2005, “Properties of Multilayered Mullite/Mo Functionally Graded Materials Fabricated by Powder Metallurgy Processing”, Materials Chemistry and Physics, Vol. 89, p238.
[8]W. D. Sproul, K. O. Legg, 1994, “Opportunities for Innovation: Advanced Surface Engineering”, Technomic Publishing Company, p15.
[9]Y. W. Gu, K. A. Khor, Y. Q. Fu and Y. Wang, 1997, “Functionally Graded ZrO2-NiCrAlY Coatings Prepared by Plasma Spraying Using Pre-mixed, Spheroidized Powders”, Surface & Coatings Technology, Vol. 96, p305.
[10]S. P. Kim, Y. C. Chung, S. C. Lee, K. R. Lee and D. S. Kim, 2006, “Co/CoAl/Co Trilayer Fabrication Using Spontaneous Intermixing of Co and Al Molecular Dynamics Simulation”, Materials Science and Engineering B, Vol. 135, p25.
[11]L. A. Girifalco and V. G. Weizer, 1059, “Application of the Morse Potential Function to Cubic Metals”, Physical Review, Vol. 114, No. 3, p687.
[12]L. Verlet, 1968, “Computer ‘Experiments’ on Classical Fluids II, Equilibrium Correlation Function”, Physical Review, Vol. 165, p201.
[13]G. H. Gilmer, M. H. Grabow and A. F. Bakker, 1990, “Modeling of Epitaxial Growth”, Materials Science and Engineering B, Vol. 6, p101.
[14]G. V. Kornich, G. Betz, V. Zaporojtchenko, K. V. Pugina, F. Faupel, 2005, “Molecular Dynamics Simulations of Interactions of Ar and Xe Ions with Surface Cu Clusters at Low Impact Energies”, Nuclear Instruments and Methods in Physics Research B, Vol. 228, p41.
[15]T. C. Chen, 2006, “Surface Properties of Film Deposition Using Molecular Dynamics Simulation”, Surface & Coatings Technology, Vol. 201, p1796.
[16]朱訓鵬,2002,分子動力學與平行運算於奈米薄膜沉積模擬之應用,國立成功大學。
[17]J. W. Evans, D. E. Sanders, P. A. Thiel, and A. E. Depristo, 1989, “Low-Temperature Epitaxial Growth of Thin Metal Films”, Physical Review, Vol. 41, No. 8, p5410.
[18]R. Lee, Z. Pan, and Y. Ho, 1996, “Molecular-Dynamics Simulations of Slow Copper Cluster Deposition”, Physical Review, Vol. 53, No. 7, p4156.
[19]葉哲宜,2003,以分子動力學模擬奈米級量子點之組成,國立成功大學。
[20]J. J. Quan, X. W. Zhou, H. N. G. Wadley, 2007, “Low-Energy Ion-Assisted Control of Interfacial Structures in Metallic Multilayers”, Journal of Crystal Growth, Vol. 300, p431.
[21]Sang-Pil Kim, 2006, “Co/CoAl/Co Trilayer Fabrication Using Spontaneous Intermixing of Co and Al:Molecular Dynamics Simulation”, Materials Science and Engineering B, Vol. 135, p25.
[22]K. S. Ravichandran, 1995, “Thermal Residual Stresses in a Functionally Graded Material system”, Materials Science and Engineering A, Vol. 201, p269.
[23]K. A. Khor, Y. W. Gu and Z. L. Dong, 1998, Proceedings of the 15th International Thermal Sparay Conference, Nice, France, May, 25-29, p1543.
[24]J. M. Haile, 1992, Molecular Dynamics Simulation, John Wiley & Sons, Inc.
[25]J. E. Lennard-Jonse, 1924, “The Determination of Molecular Fields.I. From the Variation of the Viscosity of a Gas with Temperature”, Process Royal Society A, Vol. 106, p441.
[26]F. H. Stillinger and T. A. weber, 1985, “Computer Simulation of Local Order in Condensed Phases of Silicon”, Physical Review B, Vol. 31, pp.5262.
[27]S. M. Foiles, M. I. Baskes, and M. S. Daw, 1988, “Embedded-Atom-Method Functions for the Fcc Metals Cu, Ag, Au, Ni, Pd, Pt, and their Alloys”, Physical Review B, Vol. 37, p10378.
[28]J. C. Slater, and G. F. Koster, 1954, “Simplified LCAO Method for Periodic Potential Problem”, Physical Review, Vol. 94 No. 6, p1498.
[29]H. J. C. Berendsen, M. P. J. Postma, W. F. V. Gunsteren, A. Dinola, and J. R. haak, 1984, “Molecular Dynamics with Coupling to an External Bath”, Journal of Chemistry Physical, Vol. 81, p3684.
[30]D. C. Rapaport, 1997, “The Art of Molecular Dynamics Simulation”, Cambridge University Press, London.
[31]M. P. Allen and D. J. Tildesley, 1991, “Computer Simulation of Liquids”, Oxford Science, London.
[32]D. Frenkel and B. Smit, 1996, “Understanding Molecular Simulation”, Academic Press, San Diego.
[33]Z. S. Basinski, M. S. Duesberry and R. Taylor, 1971, “Influence of Shear Stress on Screw Dis-Locations in a Model Sodium Lattice”, Canadian Journal of Physics, Vol.49, p2160.
[34]C. J. Chu and T. C. Chen, 2006, “Surface Properties of Film Deposition Using Molecular Dynamics Simulation”, Surface & Coatings Technology, Vol. 201, p1796.
[35]Xu. Qianjun, Yu. Shouwen and Kang. Yilan, 1999, “Residual Stress Analysis of Functionally Gradient Materials ”, Mechaincal Research Commun, Vol. 26, p55.
[36]Z. H. Hong, S. F. Hwang and T. H. Fang, 2008, “Atomic-Level Stress Calculation and Two Potentials for Critical Conditions of Deposition Process”, Crystal Growth & Design, Vol. 4, p1191.
[37]A. F. Voter, 1997, “A Method for Accelerating the Molecular Dynamics Simulation of Infrequent Events”, Journal of Chemical Physics, Vol. 106, No. 11, p4665.
[38]A. F. Voter, 1997, “Hyperdynamics: Accelerated Molecular Dynamics of Infrequent Events”, Physical Review Letters, Vol. 78, No. 20, p3908.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔