(3.236.122.9) 您好!臺灣時間:2021/05/14 05:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李咸學
研究生(外文):Hsien-Hsueh Lee
論文名稱:添加鎂合金之軟銲填料應用於氧化鋁陶瓷金屬化及接合研究
論文名稱(外文):Application of the Solders with Magnesium Alloy to Joining and to Surface Metallization of Alumina
指導教授:張世穎張世穎引用關係
指導教授(外文):Shih-ying Chang
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:機械工程系碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:85
中文關鍵詞:鎂合金無鉛銲錫陶瓷金屬化電鍍氧化鋁
外文關鍵詞:magnesium alloyceramic metallizationaluminalead-free solderelectroplating
相關次數:
  • 被引用被引用:0
  • 點閱點閱:250
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用具有高活性的鎂合金,添加於Sn3Ag0.5Cu無鉛銲錫合金中用以提升銲錫於陶瓷表面的潤濕性,開發低成本具商業化應用潛力之陶瓷接合技術。由於此種活性軟銲填料能於大氣環境中,在低的溫度(<250℃)有效潤濕陶瓷表面可應用於陶瓷導電、導熱或陶瓷電鍍之金屬化製程。隨著AZ31鎂合金添加量由1wt%增加至2.6wt%,Sn3Ag0.5Cu合金液相線溫度由220.2℃降至207.8℃。AZ31鎂合金添加於Sn3Ag0.5Cu合金中會於合金中形成(Ag,Mg)3Sn與Mg2Sn兩種介金屬相。以含AZ31鎂合金之Sn3Ag0.5Cu合金對Al2O3/Al2O3與Al2O3/Cu接合,其平均接合剪力強度約在5~8MPa之間。在氧化鋁陶瓷與銲錫接合界面上,經長時間時效並無明顯反應生成物形成,剪力強度亦不受時效影響。鎂的添加能抑制銲錫與銅反應之Cu6Sn5介金屬的成長。以添加2.2wt%鎂合金之銲錫合金接合Al2O3/Cu,在長時間時效後其剪力強度優於含1wt%鎂合金之接合件。利用本研究所開發之含鎂活性軟銲填料亦成功完成氧化鋁陶瓷金屬化,並於其表面進行電鍍銅之處理,開發可於低溫大氣環境的陶瓷覆銅金屬化技術。
In this study, Sn3Ag0.5Cu lead-free solder with the addition of magnesium alloy was developed and used to join ceramics. The active solders can wet the ceramics at low temperature (<250℃) in air. Thus, the soldering process can be applied to metallize the ceramics for electric and heat conduction and electroplating. The addition of magnesium from 1wt% to 2.6wt% into the Sn3Ag0.5Cu alloy caused decreasing the liquidus from 220.2℃ to 207.8℃. An addition of AZ31 magnesium alloy into the Sn3Ag0.5Cu alloy would form (Ag,Mg)3Sn and Mg2Sn intermetallic compounds. The average shear bonding strengths for Al2O3/Al2O3 and Al2O3/Cu using the AZ31 magnesium containing Sn3Ag0.5Cu solders were between 5 and 8 MPa. It is somewhat difficult to identify the interfacial reaction phases between alumina and solder even after thermal aging. There is also no apparent influence of aging for the bonding strengths of alumina joints. Magnesium addition into the solder can slow down the reaction of solder with copper to form Cu6Sn5 intermetallic compound. After long period aging, the bonding shear strengths of Al2O3/Cu joints using the solders containing 2.2wt% magnesium alloy were obviously higher than of 1wt% magnesium alloy solders. In the study, the active soldering technique was successfully developed for ceramic metallization and electroplating copper on ceramics at low temperature.
中文摘要
英文摘要
誌謝
目錄
圖目錄
表目錄
第一章 前言
第二章 理論與文獻回顧
2-1陶瓷工程應用
2-2陶瓷接合技術
2-2.1陶瓷活性軟銲接合技術
2-3無鉛銲料的研究現狀
2-3.1 Sn-Ag-Cu無鉛銲料的研究現狀
2-3.2 Sn-Ag-Cu無鉛銲料的潤濕性
2-4潤濕角理論
2-5稀土元素應用
2-5.1稀土元素
2-5.2稀土元素的性質
2-5.3稀土元素對無鉛銲料之影響
2-6鎂及鎂合金應用
2-6.1鎂及鎂合金
2-6.2鎂及鎂合金應用
2-6.3鎂元素特性及對銲錫性質之影響
第三章 實驗步驟與方法
3-1 實驗材料
3-1.1氧化鋁.
3-1.2滑石瓷
3-1.3銅.
3-2填料合金設計與合金配製
3-3填料合金熱分析試驗
3-4填料合金XRD分析
3-5填料合金熱重分析
3-6接合試驗
3-7時效試驗
3-8 金相製備
3-9接合強度試驗
3-10接合界面微觀分析
第四章 實驗結果與討論
4-1 填料合金金相微結構
4-2 填料合金金XRD分析結果
4-3 填料合金DSC熱分析試驗
4-4填料合金TGA熱重分析
4-5 Sn3Ag0.5Cu+1wt%AZ31合金填料
4-5.1 Sn3Ag0.5Cu+1wt%AZ31合金填料對Cu/Cu、Cu/Al2O3及
Al2O3/Al2O3接合研究
4-5.2 Sn3Ag0.5Cu+1wt%AZ31合金填料接合氧化鋁陶瓷與銅金屬界面顯微組織
4-5.3 Sn3Ag0.5Cu+1wt%AZ31合金填料接合氧化鋁陶瓷與銅金屬剪力強度試驗破 斷面顯微組織
4-6 Sn3Ag0.5Cu+2.2wt%AZ31合金填料
4-6.1 Sn3Ag0.5Cu+2.2wt%AZ31合金填料對Cu/Cu、Cu/Al2O3、 Cu/MgO-SiO2及 Al2O3/Al2O3接合研究
4-6.2 Sn3Ag0.5Cu+2.2wt%AZ31合金填料接合氧化鋁陶瓷與銅金屬界面顯微組織
4-6.3 Sn3Ag0.5Cu+2.2wt%AZ31合金填料接合氧化鋁陶瓷與銅
金屬剪力強度試驗破斷面顯微組織
4-7 Sn3Ag0.5Cu+2.6wt%AZ31合金填料
4-7.1 Sn3Ag0.5Cu+2.6wt%AZ31合金填料對Cu/Cu、Cu/Al2O3
及Al2O3/Al2O3接合研究
4-8 添加不同比例鎂合金於Sn3Ag0.5Cu銲料合金研究
4-8.1 添加不同比例之鎂合金於Sn3Ag0.5Cu銲料合金之接合
強度比較
4-8.2 添加不同比例鎂合金對界面反應之影響
4-9以Sn3Ag0.5Cu+1wt%AZ31接合不同純度Al2O3基材接合之剪力
強度比較
4-10以Sn3Ag0.5Cu+2.2wt%AZ31銲料合金進行陶瓷金屬化處理
第五章 結論
參考文獻
參考文獻
【1】B. Trumble, “New Solders rely on lead-free alloys of tin and do away with the toxic component”, IEEE Spectrum pp.55-60 (1998).
【2】P. T. Vianco, “Solder Alloys: A Look at the Past, Present and Future”, Welding Journal, pp.45-49 (1997).
【3】“宇力電子掌綠色技術競爭力” RoHS綠色指令 全球環境規範&無鉛焊接技術 龍璟文化 pp.233 (2005).
【4】Y. Fukuda, M. G. Pecht, Fellow, IEEE, K. Fukuda, and S. Fukuda, Senior Member, IEEE “Lead-Free Soldering in the Japanese Electronics Industry”, IEEE Transactions On Components and Packaging Technologies, 26, 3, pp.616-624 (2003).
【5】Johler. W, “Impact of Lead-Free Soldering Processes on the Performance of Signal Relay Contacts”, IEEE Transactions On Components and Packaging and Manufacturing Technology, 27, pp.30-41 (2004).
【6】S. Lu and C. Wei, “Effect of Mg on the Microstructure and Properties of Sn-Ag-Cu Lead-free”, IEEE. 2005 6th International Conference on Electronic Packaging Technology.
【7】Martin Goosey, “Soldering considerations for lead-free printed circuit board assembly-an Environment Guide”, Circuit World, 31, 3, pp.40-44 (2005).
【8】C. K.KANG, D. LEONARD, D.Y. SHIH, L. GIGNAC, D. W. HENDERSON, S. CHO, and J. YU, “Interfacial Reactions of Sn-Ag-Cu Solders Modified by Minor Zn Alloying Addition”, Journal of Electronic Materials, 35, 3, pp.479-485 (2006).
【9】竹本正, “無鉛銲料導致銲料槽損壞評估測試標準化變得必要”, RoHS綠色指令 全球規範&無鉛焊接技術 pp.201-208 (2005).
【10】劉力彰, “鎂添加對無鉛銲錫性質影響及其應用於陶瓷接合研究”, 雲林科技大學機械工程系 (2007).
【11】R. R. Tummala and E. J. Rymaszewski, “Microelectronics Packaging Handbook”, Van Nostrand Reinhold (1989).
【12】賴耿陽, “陶瓷與金屬接合工學”, 復漢出版社 (1991).
【13】G. Elssner and G. Petzow, “Metal/ Ceramic Joining”, ISIJ International, 30, 12 pp.1011-1032 (1990).
【14】M. Naka, T. Tanaka and I. Okamoto, “Joining of SiC Using Amorphous Ti Base Filler Metall”, Mater Transactions of JWRI , 15[1], pp.49-54 (1986).
【15】C. C. Lee and S. Choe, “Fluxless In-Sn Bonding Process at 140℃”, Materials Science and Engineering, A333, pp.45-50 (2002).
【16】M.C.A. Nono, J.J. Barroso, P.J. Castro*, “Mechanical behavior and microstural analysis of alumina-titanium brazed interfaces”, Materials Science and Engineering A 435-436 602-605 (2006).
【17】J. A. Fernie and A. J. Sturgeon, “Joining Ceramic Materials”, Metals and Materials, 8, 4, pp.212-217 (1992).
【18】楊振昇, “低溫陶瓷表面金屬化與活性銲料接合研究”, 雲林科技大學機械工程系 (2008).
【19】G. Li, Y. Shi, H. Hao, Z. Xia, Y. Lei, F. Guo and X. Li, “Effect of rare earth addition on shear strength of SnAgCu lead-free solder joints”, Journal of Materials Science: Materials in Electronics, 20, pp.186–192 (2009).
【20】M. Erinc*, P.J.G. Schreurs, M.G.D. Geers, “Intergranular thermal fatigue damage evolution in SnAgCu lead-free solder”, Mechanics of Materials, 40, pp.780–791 (2008).
【21】肖盈盈, “低熔點Sn基無鉛焊料研究”, 東南大學碩士學位論文 (2007).
【22】H. Okamoto, P. R. Subramanian, L. Kacprzak, in ASM Handbook Binary Alloy Phloy Phase Diagrams (1992).
【23】S. K. Kang, D. Leonard, D. Y. Shin, L. Gignac, D.W. Henderson, S. Cho, and J. Yu “Interfacial Reactions of Sn-Ag-Cu Solder modified by Minor Zn Alloys Addition” Journal of Electronic Materials, 35, 3, pp.479-485 (2006).
【24】F. Pan, B. F. Toleno, T. C. Chou and W. F. Dee “The effect of reflow profile on SnPb and SnAgCu solder joint shear strength” Soldering & Surface Mount Technology, 18, 4, pp.48–56 (2006).
【25】劉靜, 徐駿, 張富文, 楊福寶, 朱學新, “新型無鉛焊料Sn-Ag-Cu-Cr-X的性能研究” 稀有金屬, 29, 5, pp.625-630 (2005).
【26】Humenik and W. D. Kingery, “Ceramic-to-Metal Joining with Active Brazing Filler Metal”, Welding Journal, 64, 10, pp.27-32 (1985).
【27】W. Xiao, Y.W. Shi, G. C. Xu, R. Ren, F. Guo, Z. D. Xia, Y. P. Lei “Effect of rare earth on mechanical creep–fatigue property of SnAgCu solder joint” , Journal of Alloys and Compounds, 10,1016 (2008).
【28】W. Xiao, Y. Shi, Y. Lei, Z.Xiq and F. GUO, “Comparative Study of Microstructures and Properties of Three Valuable SnAgCuRE Lead-Free Solder Alloys”, Journal of Electronic Materials, 35, No.5 (2006).
【29】X. Y. Zhao, M.Q. Zhao, X. Q. Cui Xiao, T. H. Xu and M. X. Tong “ Effect of cerium on microstructure and mechanical properties of Sn-Ag-Cu system lead-free solder alloys”, Transactions of Nonferrous Metals Society of China 17, pp.805-810 (2007).
【30】金重燻, “機械材料”, 復文書局 (1994).
【31】蔡宗亮, “鎂金屬焊接”, 俄亥俄州立大學工業焊接暨系統工程系(http://tmag.org.tw/technology/TECH/21.pdf)
【32】P. Wu and K. Bai, “Lead Free Tin Based Solder Composition”, U.S. Patent 6,824,039 B2 (2004).
【33】L. Rakhlin and E. Lysava, “Copper-Magnesium-Tin”, Landolt-Börnstein - Group IV Physical Chemistry, 11, A4, pp.238-247 (2006).
【34】E. E. Vicente, S. Bermudez, A. Esteban, R.Tendler, B. Arcondo and H. Sirkin, “Invariant three-and four-phase equilibria in the magnesiu,-rich corner of the Mg-Cu-Sn ternary system”. Journal of Materials Science, 26, pp.1327-1332 (1991).
【35】J. A. Somoza, L. J. Gallego, C. Rey, S. Rozenberg, B. Arcondo, H. Sirkin, R. H. Detendler, J. A. Kovacs and J. A. Alonso, “An experimental and theoretical study of the glass-forming region of the Mg-Cu-Sn system”, Journal of Materials Science, 30, pp.40-46 (1995).
【36】K. Sugamum, “A Microstructural features of lift-off phenomenon in through-hole circuit soldered by Sn-Bi alloy”, Scripta Materialia, 38, 9, pp.1333-1340 (1998).
【37】李紅英, “稀土功能材料:新材料與應用技術叢書”, 曉園出版社, pp.1-18 (2006).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔