(3.236.118.225) 您好!臺灣時間:2021/05/17 09:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:張志鴻
研究生(外文):Chih-Hung Chang
論文名稱:自來水分配管網破損趨勢與變動之分析-以台北市售水轄區為例
論文名稱(外文):Forecasting Variations and Trends in Water-Main Breaks- A Case Study of Taipei City
指導教授:黃盈樺黃盈樺引用關係
指導教授(外文):Ying-Hua Huang
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:營建與物業管理研究所
學門:商業及管理學門
學類:其他商業及管理學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:128
中文關鍵詞:迴歸分析時間序列公共建設自來水分配管網破損預測
外文關鍵詞:Break predictionTime seriesWater distribution networkRegression analysisInfrastructure Systems
相關次數:
  • 被引用被引用:4
  • 點閱點閱:376
  • 評分評分:
  • 下載下載:106
  • 收藏至我的研究室書目清單書目收藏:0
台灣地區是一個海島型氣候的國家,其淨水(可飲用)的來源僅依賴地面水或地下湧泉,水資源之重要性在近年來被普羅大眾所重視。為了維護日常用水之高品質,訂定有效的水分配管網維護策略是相當重要的,而水分配系統與一般公共建設最大不同處是屬於地面下設施,在水分配系統隨著管路年齡的增加下,其結構狀況及操作能力會隨之降低,因此有必要進行的供水系統狀況的評估預測,以提高系統能力及維護系統。

本研究之目的在建立評估自來水分配管網破損趨勢與變動之模型,以台北市自來水分配管網為研究對象,鑒於研究對象台北市自來水事業處售水轄區之輸水管路管材80%以上為鑄鐵管材。因此本研究自國外文獻中歸納整理影響自來水分配管網鑄鐵管材破損因子,再進行因子資料蒐集與統計量化模型之建立。

本研究之模型分為兩類(單一變量、多變量),單一變量模型主要探討時間因素對自來水分配管網破損變動影響程度,並且與國外研究結果相比較。綜觀國外研究發現,單一變量模型亦可因研究對象地域、氣候之不同,發展出各種不同可能影響破損因子之多變量模型。因此多變量模型為探討在加入自然環境變量(時間、氣溫、降雨量、土壤濕度、地震級數、地震次數)與人為操作變量(交通量、配水量、輸水管長度、管線汰換長度、水壓、水質酸鹼度)下,是否對自來水分配管網破損模型有更佳之解釋能力。

研究結果發現,單一時間變量之輸水管路破損量指數模型之解釋係數 為0.73,各國研究自來水分配管網破損量結果之解釋係數 約為0.42至0.73,顯示了時間變量t對破損量多具良好的解釋能力,尤其以本研究之解釋係數 最高,顯示台北市自來水分配管網破損量之變化較他國單純。

本研究除探討時間對破損量之影響外,亦加入其他可能影響破損量之因子,以期提高對破損量之解釋能力。在多變量模型部分,環境變量模型顯著因子為時間、土壤濕度,且其 為0.7362;操作變量模型顯著因子為交通量、配水量、輸水管長度、管路汰換長度,其 為0.7608,顯示環境與操作因子對破損量的影響,最後模型統整環境及操作變量之顯著因子其 為0.8175。研究結果顯示總體變量之破損量指數模型對台北市自來水分配管網有一個最佳的解釋能力,可提供維護單位在進行長期自來水分配管網破損趨勢評估時之參考。
Deterioration of water mains causes serious problems in major urban communities worldwide. This study presents the findings of a recent study conducted on pipe-break data in an effort to identify and categorize the key factors that contribute to the deterioration of water mains and examine the applicability of existing deterioration models for water mains in representing actual field conditions.The data used in this paper were collected from a municipality that has a large water distribution network in Taiwan.

The effective planning of water distribution system renewal requires accurate quantification of the structural deterioration of water mains. As typical water distribution systems comprise hundreds and even thousands of buried pipes, direct inspection of all of them is often prohibitively expensive. Identifying water main breakage patterns over time is an effective and inexpensive alternative to measure the structural deterioration of a water distribution system.

Environmental and operational conditions exert stresses on the pipe. Pipe breakage occurs when these stresses exceed its structural resiliency. While the structural deterioration of the pipe is generally considered to be a steady, monotonous process, some of the environmental and operational stresses could be time-dependent, steady or transient. These stresses result in “noisy” breakage data sets that reduce the accuracy of establishing the underlying deterioration (ageing) patterns, especially in small data sets. If the cause of these random stresses can be identified and attributed to a measurable phenomenon (e.g., temperatures, precipitation, etc.), their “noisy” effect can be neutralised to obtain a more accurate pipe deterioration pattern.

A method is presented to analyse how breakage patterns in water mains are affected by time-dependent factors. The method is versatile enough to consider any number of underlying causes but the solution becomes more complex as the number of causes increases. Finding the “true” deterioration rates of buried water mains will inevitably lead to a more accurate prediction of their useful life, which in turn will lead to a more efficient allocation of resources for water main rehabilitation and renewal.
目錄

摘要 i
英文摘要 iii
誌謝 v
目錄 vi
表目錄 viii
圖目錄 ix
第一章 緒論 1
1.1 研究動機與背景 1
1.2 研究目的 3
1.3 研究範圍與限制 3
1.4 研究流程 4
1.5 研究架構 6
第二章 文獻回顧 7
2.1 水分配系統管路相關研究 7
2.2 水分配系統管路破損研究 8
2.2.1 水分配網路破損之物理機制模型 11
2.2.2 水分配網路破損之統計相關模型 12
2.2.2.1 確定型模型(Deterministic models) 12
2.2.2.2 機率型模型(Probabilistic models) 13
2.3 水分配網路破損之影響因素 14
第三章 研究方法 18
3.1 時間序列分析 18
3.1.1 時間指數模型 18
3.1.2 時間序列資料檢定 20
3.2 迴歸分析 21
3.2.1 迴歸分析基本概念 21
3.2.2 多元線性複迴歸模型假設 21
3.2.3 迴歸模型檢定 23
3.2.4 評估模型解釋能力 24
第四章 資料蒐集及分佈 26
4.1 資料來源及組織 26
4.2 資料敘述性統計 26
4.2.1 破損量資料說明 26
4.2.2 可能影響因子資料說明 26
4.2.3 可能影響因子數值說明 28
5.1 單一時間變量之破損量指數模型 35
5.1.1 模型建立 35
5.1.2 模型係數檢定 36
5.1.3 單一時間變量之破損量指數模型顯著性檢定 36
5.1.4 模型假設檢驗 36
5.1.5 本研究時間指數模型與各國時間指數模型比較 39
5.2 多變量之破損量指數模型 42
5.2.1 環境變量與破損量之關係 42
5.2.3 總體變量與破損量之關係 49
5.3 台北市自來水事業處營業分區之破損量指數模型 53
5.3.1 各營業處之單一時間變量破損量指數模型 53
5.3.2 各營業處之多變量破損量指數模型 54
第六章 結論與建議 59
6.1 結論 59
6.2 建議 60
參考文獻 61
附錄A:時間變量迴歸分析表 66
附錄B:環境變量迴歸分析表 69
附錄C:操作變量迴歸分析表 77
附錄D:總體變量迴歸分析表 87
附錄E:台北市售水轄區各變量迴歸分析表 96



表目錄

表2.1 水分配網路破損趨勢影響因素總整表............................................................15
表3.1 DW值之意義.....................................................................................................22
表4.1 資料樣本敘述性統計量....................................................................................34
表5.1 時間指數模型各國研究結果比較表................................................................41
表5.2 台北市水分配管網破損趨勢可能影響因素....................................................42
表5.3 環境變量ADF單根檢定表...............................................................................42
表5.4 環境變量與破損量指數模型係數表................................................................44
表5.5 操作變量ADF單根檢定表...............................................................................46
表5.6 操作變量與破損量指數模型係數表................................................................48
表5.7 總體變量與破損量指數模型係數表................................................................50
表5.8 台北市自來水事業處各營業分區破損量指數模型係數表............................55





























圖目錄

圖1.1 96年度台北市輸配水管材質分佈比例.............................................................2
圖1.2 96年度台灣省與高雄市輸配水管材質分佈.....................................................2
圖1.3 研究流程圖..........................................................................................................5
圖2.1 加拿大、美國輸水管材質分佈比例 (Kleiner and Rajani ,2000) ......................8
圖2.2 水分配管網管路破損型式(O’Day et al.,1986) .................................................9
圖4.1 台北自來水事業處售水轄區氣溫時間序列圖................................................28
圖4.2 台北自來水事業處售水轄區降雨量時間序列圖............................................29
圖4.3 台北自來水事業處售水轄區土壤濕度時間序列圖........................................29
圖4.4 台北自來水事業處售水轄區地震活動時間序列圖........................................30
圖4.5 台北自來水事業處售水轄區地震頻率時間序列圖........................................30
圖4.6 台北自來水事業處售水轄區輸水管長時間序列圖........................................31
圖4.7 台北自來水事業處售水轄區配水量時間序列圖............................................31
圖4.8 台北自來水事業處售水轄區管線汰換長度時間序列圖................................32
圖4.9 台北自來水事業處售水轄區水壓時間序列圖................................................32
圖4.10 台北自來水事業處售水轄區水質酸鹼度時間序列圖....................................33
圖4.11 台北自來水事業處售水轄區交通量時間序列圖............................................33
圖5.1 標準化殘差次數分配圖(單一時間變量之破損量指數模型) ........................37
圖5.2 常態累積機率圖(單一時間變量之破損量指數模型).....................................37
圖5.3 殘差散佈圖(單一時間變量之破損量指數模型) ............................................38
圖5.4 單一時間變量之破損量指數模型....................................................................39
圖5.5 環境變量之破損量指數模型............................................................................45
圖5.6 操作變量之破損量指數模型............................................................................49
圖5.7 總體變量之破損量指數模................................................................................52
圖5.8 東區營業處之多變量破損量指數模型............................................................56
圖5.9 西區營業處之多變量破損量指數模型............................................................56
圖5.10 南區營業處之多變量破損量指數模型..........................................................57
圖5.11 北區營業處之多變量破損量指數模型..........................................................57
圖5.12 陽明區營業處之多變量破損量指數模型......................................................58
參考文獻

1.王瑋菘,「921集集地震自來水管線災損分析,以豐原、東勢、石岡、霧峰、埔里為例」,台北科技大學土木與防災技術研究所碩士論文。2002
2.台北市自來水事業處,中華民國84-96年自來水統計年報,1994-2008。
3.台灣省自來水公司,中華民國96年自來水統計年報,2008。
4.吳文川,「台北區自來水管線系統地震危害度評估及因應對策研究」,台灣科技大學營建工程所碩士論文,2001。
5.李承翰,「921集集地震東勢鎮、石岡鄉自來水管線災損分析及其與污水、天然氣管線災損之比較分析」,台北科技大學土木與防災技術研究所碩士論文,2002。
6.洪志初,「台灣省自來水漏水原因探討及其控制成效案例分析」,國立成功大學水利及海洋工程學系專班碩士論文,2004。
7.洪瑞鍠,「921集集大地震霧峰鄉自來水管線震害成因分析」台北科技大學土木與防災技術研究所碩士論文,2001。
8.孫文益,「臺北自來水事業處陽明轄區自來水管腐蝕型態分析」,中原大學機械工程研究所碩士論文,2005。
9.張武城,「自來水供水系統減少漏水損失策略評估之研究,以基隆地區為例」,海洋大學河海工程研究所碩士論文,2005。
10.張堂政,「自來水管線震害災損量化推估與對策-以嘉義市為例」,國立台北科技大學土木與防災技術研究所碩士論文,2004。
11.黃文龍,「迴歸分析」,滄海書局,2005。
12.溫琮盟,「瑞芳供水系統配水管網漏水率及可靠度分析」,國立臺灣海洋大學航運管理學系碩士論文,2003。
13.萬鑫森,「基礎土壤物理學」,國立編譯館,1999。
14.劉鈞鴻,「管線破損自動偵測通報整合系統的開發與實作」,國立台北科技大學土木與防災技術研究所碩士論文,2007。
15.Achim, D., Ghotb, F., and McManus, K. (2007). “Prediction of water pipe asset life using neural networks.”J. Infrastruct. Syst., 13(1), pp.26–30.
16.Al-Barqawi,H., and Zayed,T.(2006). “Condition Rating model for underground infrastructure sustainable water mains” Journal of Performance of Constructed Facilities, Vol. 20, Issue2,pp.126-135.
17.Andreou, S. A., Marks, D. H., and Clark, R. M. (1987a). “A new methodology for modeling break failure patterns in deteriorating water distribution systems: Theory.” Advance in Water Resources, 10, pp.2-10.
18.Andreou, S. A., Marks, D. H., and Clark, R. M. (1987b). “A new methodology for modeling break failure patterns in deteriorating water distribution systems: Applications.” Advance in Water Resources, 10, pp.11-20.
19.Baer, N. (1998) “Buried treasures:NRC institute for research in construction develops new ways to evaluate the performance of undergroundpipes.” Can. Consult. Eng., 39(2), pp.41–43.
20.Belmonte,H.M.S.,Mulheron,M,and Smith,P.A.,(2007)“Weibull analysis,
extrapolations and implications for condition assessment of cast iron water mains”, Journal Fatigue Fract Engng Mater Struct, Vol. 30,pp.964-990.
21.Best Practices.(2003a). “Best practices for utility-based data.” Best Practice by the National Guide to Sustainable Municipal Infrastructure, Issue No.1.0., Ottawa.
22.Best Practices. (2003b). “Deterioration and inspection of water distribution systems.” Best Practice by the National Guide to Sustainable Municipal Infrastructure, Issue No.1.1, Ottawa.
23.Brémond, B. (1997). Statistical modeling as help in network renewal decision. European commission cooperation on science and technology (COST), Committee C3 – diagnostics of urban infrastructure, Paris, France.
24.Clark, R.M., Stafford,C.L. and Goodrich, J. A. (1982). “Water distribution systems: a spatial and cost evaluation.” Journal of Water Resources Planning and Management Division, ASCE, 108(3), pp.243-256.
25.Conlin, R. M., and Baker, T. J. (1991) . Application of fracture mechanics to the failure behaviors of buried cast iron mains. Transport Research Laboratory Contract Report No. 266.
26.Cox, D. R. (1972). “Regression models and life tables.” Journal of Royal Statistic Society, 34(B),pp.187-220.
27.Cox, D. R., and Oakes, D. (1984). Analysis of survival data. London, Chapman and Hall.
28.Das, B.M.著,周毅等譯,「土壤力學與基礎工程」,第二版,高立圖書公司,2004。
29.Dandy, G. C. and Engelhardt, M. O.,(2006) “Multi-Objective Trade-Offs between cost and reliability in the replacement of water mains” Journal of Water Resources Planning and Management, Vol. 132, Issue 2, pp.79-88.
30.Eisenbeis, P., Rostum, J., and Le Gat, Y. (1999). “Statistical models for assessing the technical state of water networks – some European experiences.” Proceedings of the AWWA Annual Conference, Chicago.
31.Karaa,F.A. and Marks,D.H.(1990) “Performance of water distribution networks : integrated approach.”, Journal of Performance of Constructed Facilities, Vol. 4, Issue3, pp.51-67.
32.Giustolisi,Z.,and Laucelli,D.,and Savic,D,A.,(2006)”Development of rehabilitation plans for water mains replacement considering risk and cost-benefit assessment” Civil Engineering and Environmental Systems , Vol. 23, Issue3,pp.175-190.
33.Goulter, I., Davidson, J., and Jacobs, P. (1993). “Predicting water-main breakage rates.” Journal of Water Resources Planning and Management, 119(4), pp.419-436.
34.Guan, X. (1995). “Condition and replacement of regina’s water distribution system.” M.Sc. thesis, The University of Regina, Regina, Sask.
35.Habibian, A.,(1994) ‘‘Effect of temperature changes on water-main break.’’ Journal Transportation Engineering, Vol. 120, Issue2, pp.312-321.
36.Hudak, P., Sadler, B., and Hunter, B. (1998). “Analyzing underground water-pipe breaks in residual soils.”Water Eng. Manage., 145(12),pp.15–20.
37.Hu, Y., and Hubble, D. W. (2007). “Factors contributing to the failure of asbestos cement water mains.” Canadian Journal of Civil Engineering, 34, pp.608-621.
38.Jacobs, P., and Karney, B. (1994). “GIS development with application to cast iron water main breakage rate.” 2nd international conference on water pipeline systes. BHR Group Ltd, Edinburgh, Scotland.
39.Juned. L S.(2003)“Risk and hydraulic reliability analysis of water distribution systems”, KING FAHD University of Petroleum & Minerls..
40.Kleiner, Y., and Adams,J.,and Rogers J. S.,(2001). ”water distribution network renewal planning.” Journal of Computing in Civil Engineering Vol. 15, Issue1, pp.15-26.
41.Kleiner,Y.,and Rajani,B. B. (1999). ‘‘Using limited data to assess future need.’’ Journal of AWWA, Vol.91, Issue7, pp.47–62.
42.Kleiner,Y.,and Rajani,B. B. (2000).‘‘Considering time-dependent factors in the statistical prediction of water main breaks.’’ AWWA Infrastructure Conference Proceedings,2000,Baltimore, Maryland, pp. 12-15.
43.Kleiner, Y., and Rajani, B. B. (2001a). ‘‘Comprehensive review of structural
deterioration of water mains: Statistical models.’ ’Journal of Urban Water, Vol. 3,
Issue3, pp.131–150.
44.Kleiner, Y., and Rajani, B. B. (2001b). “Comprehensive review of structural
deterioration of water mains: physically models.’’ Journal of Urban Water, Vol. 3,
Issue3, pp.151–164.
45.Kleiner,Y.,and Rajani,B.B.(2002). ”Forecasting variations and trends in water-main breaks.” Journal of Infrastructure Systems, Vol.8, Issue4, pp.122-131.
46.Kleiner,Y.,and Rajani,B.B.(2004). ”Quantifying effectiveness of cathodic protection in water mains: theory.” Journal of Infrastructure Systems, Vol. 10, Issue 2, pp.43-51.
47.Kleiner,Y.,and Rajani,B.B.(2007). “Quantifying effectiveness of cathodic protection in water mains: Case Studies”, Journal of Infrastructure Systems, Vol. 13, No.1,pp.1-11.
48.Lee,J. (2004) “Decision support tool for optimal replacement of plumbing systems”, Virginia Polytechnic Institute and State University.
49.Lei, J. (1997). Statistical approach for describing lifetimes of water mains – Case Trondheim Municipality. SINTEF Civil and Environmental Engineering, Report No. 22F007.28, Trondheim, Norway.
50.Makar, J., and Rajani, B. (2000). “Grey cast iron water pipe metallurgy.” ASCE J. constr. Mater., 12,pp.245-254.
51.Marks, H.D.,and Lisa,A.J. (1985). Predicting urban water distribution maintenance strategies: a case study of New Haven Connecticut. US Environmental Protection Agency.
52.Marks, H. D., Andreou, S., Jeffrey, L., Park, C. and Zaslavski, A. (1987) Statistical models for water main failures. US Environmental Protection Agency.
53.Marshall, P. (2001). The Residual Structural Properties of Cast Iron Pipes – Structural and Design Criteria for Linings for Water Mains. Pipeline Innovation, UK Water Industry Research Limited, Report Ref. No. 01/WM/02/14.
54.Marvin, K. (1996). Predicting the failure performance of individual water mains. Research Report No. 114, Urban Water Research Association of Australia, Melbourne, Australia.
55.Mordak, J., and Wheeler, J. (1988). “Deterioration of asbestos cement water mains.” Final report to the Department of the Environment, Water Research Center, Wiltshire, UK.
56.Newport, R. (1981). ‘‘Factors influencing the occurrence of bursts in iron water mains.’’ Water Supply and Management, 3, pp.274–278.
57.Park, S., Jun, H., Kim, B. J., and Im,G. C.,(2007) “Modeling of water main failure
rates using the log-linear ROCOF and the power law process”, Water Resources
Management ,(22),pp.1311–1324
58.Herrington,P. R. (1998).” Analysing and forecasting peak demands on the public water supply.” Journal of CIWEM, Vol. 4, Issue1, pp.139-143.
59.Petras,G.S, and Stewart, W.F.(2007)“Understanding failure rates in cast iron pipes using temporal stratification” Urban Water Journal, Vol. 4, No. 1,pp.1-7.
60.Rajani, B., and Kleiner, Y. (2007). “Quantifying effectiveness of cathodic protection in water mains: case studies.” Journal of Infrastructure Systems, 13(1), pp.1-11.
61.Rajani, B., and Makar, J. (2000). “A methodology to estimate remaining service life of grey cast iron water main.” Can. J. Civil Eng., 27,pp.1259-1272.
62.Rostum, J.(2000)“Statistical modelling of pipe failures in water network” Norwegian University of Science and Technology.
63.Sadiq, R., Rajani, B. B.,and Kleiner, Y.,(2004), ”Fuzzy-based method to evaluate soil corrosivity for prediction of water main deterioration” Journal of Infrastructure Systems, Vol. 10, Issue4, pp.149-156.
64.Shamir, U., and Howard, C. D. D.(1979) ‘‘An analytic approach to scheduling pipe replacement.’’ Journal of AWWA, Vol.71, Issue5, pp.248-258.
65.Tesfamariam,S.,Rajani,B., and Sadiq,R.,(2006) “Possibilistic approach for consideration of uncertainties to estimate structural capacity of ageing cast iron water mains” Can. J. Civ. Eng. Vol. 33, pp.1050-1064.
66.Tesfamariam,S., Rajani,B., and Sadiq,R.(2006)“Possibilistic approach for consideration of uncertainties to estimate structural capacity of ageing cast iron water mains“Can. J. Civ. Eng. 33: pp.1050–1064.
67.Walski, T. M., and Pelliccia, A. (1982) “Economic analysis of water main breaks.” Journal of AWWA, Vol.74, Issue3, pp.140-147.
68.Wang,Y., Moselhi,O.,and Zayed.T. (2009)“Study of the suitability of existing deterioration models for water mains” Journal of Performance of Constructed Facilities, Vol. 23, No. 1,pp.40-46.
69.Wang,Y., Zayed.T.,and Moselhi,O. (2009)“Prediction models for annual break rates of water mains” Journal of Performance of Constructed Facilities, Vol. 23, No. 1,pp.47-54.
70.Wooldridge,J.M著,胥愛琦譯,「計量經濟學」,東華書局,2007。
71.Yamamoto, K., Mizoguti, S., Yoshimitsu, K., and Kawasaki, J. (1983). “Relation between graphitic corrosion and strength of cast iron pipes.” Corrosion Eng. 32, pp.157-162.
72.Wang,Y.; Zayed,T., and Moselhi,O. (2009). “Prediction models for annual break rates of water mains.” Journal of Performance of Constructed Facilities, Vol. 23, Issue1,pp.47-54.
73.Zayed,T.,and Halpin,D.(2005). “Pile construction productivity assessment.” Journal of Construction Engineering and Management, Vol. 131, Issue 6, pp.705-714.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊