(44.192.66.171) 您好!臺灣時間:2021/05/18 01:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:楊柏桓
研究生(外文):Bo-huan Yang
論文名稱:振動夯實載重下土壤行為之數值模擬
論文名稱(外文):Numerical simulation of soil behaviour under vibration compaction
指導教授:江健仲
指導教授(外文):Chiang, Chine Chung
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:營建工程系碩士班
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:97
中文關鍵詞:夯壓反覆載重超額孔隙水壓有限元素法數值模擬
外文關鍵詞:compactionfinite element methodnumerical simulationexcess pore water pressurecyclic loading
相關次數:
  • 被引用被引用:0
  • 點閱點閱:188
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
土壤不論是於施工期間受到夯實機械夯壓振動,或於交通服務期間受到車輛之反覆載重作用下,皆可能因為垂直向反覆應力過大而激發超額孔隙水壓,造成土體有效應力下降,降低舖面層的使用性。本研究使用有限元素分析軟體Geo-Studio 2004中之QUAKE/W模組,對高地下水位土層在受到夯實機械夯壓的情況下進行數值模擬。在相同的夯壓振幅下,不同強度土壤之最大位移量與體積應變皆隨強度增加而減小,而在剪應變的發展上,高強度者多集中在深度2m以內的範圍,低強度者呈均勻向外發展的趨勢。在改變夯壓振幅的情況下,當振幅為111kN時,加載板下方2m範圍內水壓激發程度明顯,有效應力急遽下降,而振幅為55.5 kN時,在深度1m處之孔隙水壓有些許的增量外,其他情況則無較大的水壓反應。
The soil under vibration compaction during construction, or moving load by vehicle during transport, is possibly induced excess pore water pressure due to the large vertical cyclic stress. This may decrease the effective stress of soil and damage pavement. In this study the finite element software, the QUAKE/W module of Geo-Studio 2004 was used to simulate the high water table in soil layer during compaction.
As the same amplitude of vibration, the maximum displacement and volume strain of soil decreased with the soil strength increased. Furthermore, the development of shear strain at high strength soil concentrated in the range of less than 2m deep, while at low strength soil was evenly outward distributed. In the case of vibration amplitude equal to 111kN, the pore pressure of the soil built up significantly and the effective stress of the soil decreased rapidly within 2m below the loading plate. When the amplitude was 55.5kN, the pore pressure slightly increased at the depth of 1m. In the other case, the pore pressure had no significant response.
中文摘要 i
英文摘要 ii
目錄 iv
表目錄 vi
圖目錄 vii
第一章 緒論 1
1.1研究動機與目的 1
1.2研究方法與流程 1
1.3論文內容 2
第二章 文獻回顧 3
2.1液化現象 3
2.2孔隙水壓變化狀況 6
2.3土壤勁度及阻尼比變化情況 8
第三章 數值分析方法與軟體 11
3.1有限元素法簡介 11
3.2 QUAKE/W簡介 12
3.3 QUAKE/W分析模式 12
3.3.1土壤動態參數設定 12
3.3.2水壓力函數設定 14
3.4 QUAKE/W時間運算法則 19
第四章 數值模擬分析與結果 22
4.1數值模擬模型建置 22
4.1.1分析流程與參數設定 22
4.1.2邊界條件建立 29
4.1.3網格尺寸設定 36
4.1.4分析時階設定 42
4.1.5小結 43
4.2不同反覆軸差應力比下之孔隙水壓反應 48
4.3不同等值反覆作用次數下之孔隙水壓反應 54
4.4不同強度下之土壤動力反應 69
4.5不同夯實振幅下之土壤反應 75
第五章 結論與建議 81
5.1結論 81
5.2建議 82
參考文獻 83
1.林國忠,(1997).,反覆荷重作用下砂性土壤之變形行為研究,碩士論文,國立成功大學土木工程研究所
2.林京翰,(2007).,利用小型振動台模擬邊坡受震情形之研究,碩士論文,國立台灣大學土木工程研究所。
3.吳偉特,(1983).,土壤動力特性於大地工程之應用,地工技術雜誌,第二期。
4.歐章煜,(2002).,深開挖工程─分析設計理論與實務,科技圖書公司。
5.Boulanger, R. W., and Truman, S. P. (1996). “Void Redistribution in Sand under Post-Earthquake Loading,”Canadian Geotechnical Journal, Vol.33, 829-834.
6.Casagrande, A.(1936).“Characteristics of Cohesionless Soils Affecting Stability of Slopes and Earth Fills,” Journal of the Boston Society of Civil Engineers, January; reprinted in Contributions to Soil Mechanics 1925-1940, BSCE, pp.257-276.
7.Castro,G.(1969).“Liquefaction of Sands”, PhD. Thesis, ” Harvard University; reprinted as Harvard Soil Mechanics Series, No.81, pp.112
8.Castro, G., and Poulos, S.J.(1977).“Factors Affecting Liquefaction Cyclic Mobility,” Journal of the Geotechnical Engineering Division, ASCE, Vol. 103, No. GT6, pp.501-516.
9.DeAlba, P., Chan, C.K., and Seed, H.B. (1975). “Determination of Soil Liquefaction Characteristics by Large-scale Laboratory Tests,” Report No. EERC 75-14, Earthquake Engineering Research Center, California
10.Florin, V. A., & Ivanov, P. L. (1961). “Liquefaction of Saturated Sandy Soils,” Proceedings of the Fifth International Conference on Soil Mechanics and Foundation Engineering, (1), Paris, 107-111.
11.Krahn, J., (2004). “Dynamic Modeling with QUAKE/W,” Canada: GEO-SLOPE International Ltd.
12.Kramer, Steven Lawrence. (1996). “Geotechnical Earthquake Engineering,”Prentice Hall, Inc., Upper Saddle River, New Jersey.
13.Lopez-Caballero, F., Modaressi, A., (2008). “Numerical Simulation of Liquefaction Effects on Seismic SSI,” Soil Dynamics and Earthquake Engineering, Vol.28, 85-98.
14.McCarthy, D.F(1998).“Essentials of Soil Mechanics and Foundations,” 5th. Prentice Hall, Inc., Upper Saddle River, New Jersey.
15.Richart, F.E., Hall, J.R. and Woods, R.D., (1970). “Vibrations of Soils and Foundations,” Prentice Hall, Englewood Cliffs, New Jersey.
16.Roesset, J.M., (1980). “Computer Model for Soil Structure Interaction Analyses.” Proc. Century 2 Pressure Vessels & Piping Conference.
17.Seed, H. B., Mori, K., Chan, C. K. (1977). “Influence of Seismic History on Liquefaction of Sands,” Journal of Geotechnical Engineering Division, ASCE, 103(GT4), 246-270.
18.Seed, H.B., Idriss, I.M., Makdisi, F., and Banerjee, N. (1975). “Representation of Irregular Stress Time Histories by Equivalent Uniform Stress Series in Liquefaction Analyses,” Report No. EERC 75-29, Earthquake Engineering Research Center, California.
19.Seed, H.B., and Martin, P.P., and Lysmer, J. (1976). “Pore-water Pressure Changes During Soil Liquefaction,” Journal of the Geotechnical Engineering Division, ASCE, Vol. 102, No. GT4, pp. 1249-1273.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top