(3.238.96.184) 您好!臺灣時間:2021/05/12 21:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:張廷維
研究生(外文):Ting-Wei Jang
論文名稱:外加電流對微生物產氫效能之研究
論文名稱(外文):The Effects of Electric Current on the Performance of the Bio-hydrogen Production
指導教授:萬騰州萬騰州引用關係
指導教授(外文):Teng -Jou Wantj
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:環境與安全工程系碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:58
中文關鍵詞:產氫產氫菌電流
外文關鍵詞:electrichydrogenasehydrogenogens
相關次數:
  • 被引用被引用:4
  • 點閱點閱:198
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:31
  • 收藏至我的研究室書目清單書目收藏:0
近幾年以微生物厭氧產氫於國內皆有不錯之發展,但皆以改變基質及污泥來源做為研究方向,並以pH、HRT、溫度加以探討。本研究期望利用ferredoxin將電子傳送至hydrogenase,形成之ATP促使電子與質子結合產生氫氣之原理,在反應槽中以加入微電流之方式,改變微電流之強度,探討能否增加其產氫速率及產氫濃度,並加以檢測產氫菌之菌相是否因外加電流關係而有所改變。
結果顯示,未加電流之產氣量為625mL/L•hr氫氣濃度為42%;而經外加電流1.05-3.66mA/cm2後產氣量為1200-1350mL/L•hr,其氫氣濃度為32-42%。當電流強度為1.05-2.09 mA/cm2時為最佳產氫量,其總產氣量則因外加電流之關係提升為原來的兩倍。但氫氣濃度於外加電流2.09 mA/cm2時開始下降。推測外加電流於2.09 mA/cm2時對產氫菌產氫效能為最佳,超過2.09 mA/cm2時產氫菌之產氫能力開始減緩。其菌相經電子顯微鏡(SEM)的觀察發現,當產氫菌於產氫效率較好時外觀較長,較短時則產氫能力較為緩慢。
In recent years anaerobic produces the hydrogen by the microorganism in domestic to have the good development, but all take changes the matrix and the sludge origin does as the research direction, and by pH, HRT, the temperature discusses. This research expectation uses ferredoxin the electronic transmission to hydrogenase, forms ATP to urge the electron and principle of the proton associated production hydrogen, joins way of the micro electric current in the reactor, changes intensity of the micro electric current, whether discusses to increase it to produce the hydrogen speed and to produce the hydrogen density, and examines fungus of the hydrogenogens whether to change because of the impressed current relations.
The result showed that has not added the electric current to produce the spirit is 625mL/L• hr hydrogen density is 42%; But after the impressed current 1.05-3.66mA/cm2 after-birth spirit is 1200-1350mL/L•hr, its hydrogen density is 32-42%. When the strength of current is 1.05-2.09 mA/cm2 to produce the hydrogen quantity best, because its total output spirit relations of promotion impressed current for original two times. But hydrogen density in impressed current 2.09 mA/cm2 when starts to drop. Extrapolation impressed current in 2.09 mA/cm2 when produce the hydrogen potency to the hydrogenogens to best, surpasses when 2.09 mA/cm2 the hydrogenogens produces the hydrogen ability to start to slow down. Its fungus passes through electron microscope (SEM) the observation to discover, when the hydrogenogens in producing the hydrogen efficiency is good the outward appearance to be long, short-time produces the hydrogen ability to be slower.
近幾年以微生物厭氧產氫於國內外皆有不錯之發展,但皆以改變基質及污泥來源來做為研究方向,並以pH、HRT、溫度加以探討。
本研究期望利用ferredoxin將電子傳送至hydrogenase,形成之ATP促使電子與質子結合產生氫氣之原理,在反應槽中以加入微電流之方式,嘗試改變其電子傳遞之速率,探討外加電流強度能否增加其產氫速率及產氫濃度,並加以檢測產氫菌之菌相是否因電流關係而有所改變。
1. Beneman, J. Hydrogen biotechnology-progress and prospect. NatureBiotechnol. 14:1101,1996.
2.Chin HL,Chen ZS, Chen CP. Fedbatch operation using Clostridium acetobutylicum suspension culture as biocatalyst for enhancing hydrogen production Biotechnoi Prog 19:383-388,2003.
3.Chen WM., Tseng ZJ, Lee KS, Chang JS. Fermentative hydrogen production by anaerobic fermentation. Int J Hydrogen Energy,2005.
4.Chen CC, Lin CY. Start-up of Anaerobic Sewage Sludge. Acta Biotechnol 21(4):371-379, 2001.
5.Chenog DY, Hansen CL. Acidogenesis characteristics of natural, mixed anaerobes converting carbohydrate-rich synthetic wastewater to hydrogen. Process Biochem 41(8):1736-1745,2006.
6.Das, D., and T. N. Veziroglu. Hydrogen production by biologicalprocesses: a survey of literature., Int. J. Hydrogen Energy. 26: 13-28,2001.
7.Fan KS,Kan NR, Lay JJ. Effect of hydraulic retention time on anaerobic hydrogenesis in CSTR. Bioresour Technol 97(1):84-89,2006a.
8.Fang HHP, Liu H. Effect of pH on hydrogen production from glucose by a mixd culture. Bioresour Technol 82(2):87-93, 2002.
9.Fang HHP, Li CL, Zhang T. Acidophilic biohydrogen production from rice slurry Int J Hydrogen Energy 31:683-92,2006.

10.Gavala HN, Skiadas IV, Ahring BK. Biological hydrogen production in suspended and attached growth anaerobic reactor systems. Int J Hydrogen Energy 31(9):1164-1175,2008.
11.Hawkes FR, Dinsdale R, Hawkes DL, Hussy I. Sustainable fermentative hydrogen production:challenges for process optimization. Int J Hydrogen Energy 27:1339-1347,2002.
12.Hussy I, Hawkes FR, Dinsdale R, Hawkes DL. Continuous fermentative hydrogen production from sucrose and sugarbeet Int J Hydrogen Energy 30(5):471-483,2005.
13.Hűlya Yavuz, Çelebi, Serdar. Effects of magnetic field on activity of activated sludge in wastewater treatment. Enzyme and Microbial Technology. Volume:26,Issue:1,January,pp.22-27,2000.
14.Kumar N, Das D. Continuous hydrogen production by immobilized Enterobacter cloacae IIT-BT 08 using lignocellulosic materials as solid matrices. Enzyme Microb Technol 29:280-287,2001.
15.Lawier, A. Walker Bill to boost hyd rogen sparks democratic grumbling.Science 267:613, 1995.
16.Levin DB, Pitt L, Love M. Biohydrogen production :prospects and limitations to practical application. Int J Hydrogen Energy 29:173-185,2004.
17.Lee, J.W., and E. Greenbaum. Bioelectronics and biometakko-catalysis for production of fuels and chemicals by photosynthetic water splitting. Appl.Biochem. Biotechnol. 51/52:295, 1995.

18.Lin CY, Cheng CH. Fermentative hydrogen production from xylose using anaerobic mixed microflora. Int J Hydrogen Energy 31(7):832-840,2006.
19.Lee, KS, Lin PJ, Fangchiang K, Chang JS. Continuous hydrogen production by anaerobic mixed microflora using a hollow fiber microfiltration membrane bioreactor. Inter J Hydrogen Energy(In press, Available online),2006c.
20.Mu Y, Wang G, Yu HQ. Kinetic modeling of batch hydrogen production process by mixed anaerobic cultures Bioresour Technol 97(11):1302-1307, 2006a.
21.Marigadat,B.,Smith,G.C.,Dutson,T.R.,Hall,L.C.,Hanna,M.O.and Vaderzant,C.Bacteriology of electrically stimulated and unstimulated carcasses,J.Food Port, 43(9),pp.686-693, 1980.
22.Pareilleux,A. and Sicard, N. Lethal effects of electric current on Escherichia coli, Appli. Microbiol, 19(3),pp.421-424, 1970.
23.Sawyer C.N.,McCarty P.L., and Parkin G.F. Chemistry For Environmental Engineering 4th ed., McGraw-Hill,New York, 1994.
24.Shimada,K and Shimahara,k. Factors affecting the surviving fractions of resting Escherichia coli B and K-12 cells exposed to alternating current, Agric. Biol. Chem. 45,pp.1589-1595,1981.
25.Taguchi, F., N. Mizukami, K. Yamada, K. Hasegawa and T. Saito-Taki. Direct conversion of cellulosic materials to hydrogen by Clostridium sp. strainno.2, Enzyme Microbiol. Technol. 17:147,1995.


26.Van Ginkel S, Sung S, Lay JJ. Biohydrogen production as a function of pH and substrate concentration. Environ Sci Technol 35:4726-4735,2001.
27.Yu HQ, Zhu ZH, Hu WR, Zhang HS. Hydrogen production from rice winery wastewater in an upflow anaerobic reactor by using mixed anaerobic cultures. Int J Hydrogen Energy 27:1359-1365,2002.
28.Yokoi H, Aratake T, Hirose J, Hayashi S, Takasaki Y. Simultaneous production of hydrogen and bioflocculant by Enterobacter sp. BY-29. World J Microbiol Biotechnol 17(6):609-13,2001a.
29.Zhang Y, Shen J. Effect of temperature and iron concentration on the growth and hydrogen production of mixed bacteria Int J Hydrogen Energy 31(4):441-446,2006.
30.吳晟,明日綠色能源之星─氫能源,能源報導(1994)
31.張嘉修、李國興、林屏杰、吳石乙、林秋裕,“以環境生物技術生產清潔能源-氫氣”,化工,第49卷,第6期,第85-104頁,(2002)。
32.范姜楷,“以CSTR 合併中空纖維微過濾模組進行厭氣污泥連續式產氫醱酵”,逢甲大學化學工程研究所碩士論文,台中,(2002)。
33.鐘椀亭,“厭氧混合菌群之木糖產氫”,逢甲大學環境工程與科學學系碩士論文,台中,(2002)。
34.賴奇厚,營養鹽對厭氧產氫之影響,逢甲大學環境工程與科學學系碩士論文,台中,(2002)。
35.白明德,“厭氧生物產氫機制與程序操作策略之研究”,國立成功大學環境工程研究所碩士論文,台南,(1999)。

36.萬騰州、花建佑、張書豪、陳榮崇、楊俊銘,外加交流電流對活性汙泥生物效應之評估,第二十五屆廢水處理技術研討會,2000,頁110-118
37.李國興*、張嘉修、林屏杰、林秋裕、吳石乙、洪俊雄 “厭氧生物產氫之研發”化工,第54卷第1期,pp.69-106. (2007)
38.林秋裕、林明正、周家弘,CSTR反應槽馴養不同污泥之產氫能力探討,第二十五屆廢水處理技術研討會論文集,第362-367頁(2000)
39.周佳音、方煒,More readings on Biomimic生物模擬,國立台灣大學,台北。
40.楊立豪,以改良式SBR 程序進行含糖廢水醱酵產氫之饋料進流策略最佳化探討,逢甲大學化學工程學系碩士論文,2003。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔