跳到主要內容

臺灣博碩士論文加值系統

(44.221.73.157) 您好!臺灣時間:2024/06/20 12:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:程彥鈞
研究生(外文):Yen-Chun Cheng
論文名稱:過氧苯酸第三丁酯之熱動力學參數探討
論文名稱(外文):Thermokinetic Parameters Analysis for Tert-Butyl Peroxybenzoate
指導教授:徐啟銘徐啟銘引用關係
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:環境與安全工程系碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:81
中文關鍵詞:過氧苯酸第三丁酯多頻道微量熱卡計微差掃瞄熱卡計過氧化二苯甲醯
外文關鍵詞:benzoyl peroxidethermal activity monitor IIIdifferential scanning calorimetrytert-butyl peroxybenzoate
相關次數:
  • 被引用被引用:0
  • 點閱點閱:398
  • 評分評分:
  • 下載下載:40
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用微差掃瞄熱卡計 (differential scanning calorimetry, DSC) 與多頻道微量熱卡計 (thermal activity monitor III, TAM III) 針對過氧苯酸第三丁酯 (tert-butyl peroxybenzoate, TBPB) 與過氧苯酸第三丁酯混合過氧化二苯甲醯 (benzoyl peroxide, BPO) 進行熱分析研究,從研究結果得知過氧苯酸第三丁酯與混合過氧化二苯甲醯之熱焓值 (ΔHd) 皆超過1,000 J g–1,從研究得知過氧苯酸第三丁酯與過氧苯酸第三丁酯混合過氧化二苯甲醯之熱動力學參數,如:活化能 (activation energy, Ea) 為106.9–144.4kJ mol–1、反應速率常數 (frequency factor, A) 為 6.054×1014 min–1、放熱起始溫度 (exothermic onset temperature ,T0) 為 73.25–99.51oC 等,上述之研究結果可提石化業在供儲存運輸或製程等之參考依據。
Effects of time, temperature, and heat of decomposition (ΔHd) of tert–butyl peroxybenzoate (TBPB) and TBPB mixed with benzoyl peroxide (BPO) on the thermal analysis by using chamber furnace, thermal activity monitor III (TAM III), and differential scanning calorimetry (DSC) were investigated. Typically different ratios of TBPB mixed with BPO are employed to cure an unsaturated polyester resin. Both TBPB and BPO had high ΔHd more than 1,000 J g–1. Afterwards, TBPB mixed with BPO could have higher ΔHd. The higher ΔHd in the decomposition reaction, the greater the degree of thermal hazard. Therefore, this study assessed the thermokinetic parameters of TBPB and TBPB mixed with BPO, such as activation energy (Ea=106.9–144.4kJ mol–1), frequency factor (A=6.054×1014 min–1), exothermic onset temperature (T0=73.25–99.51oC), etc., with other safety parameters for TBPB and TBPB mixed with BPO.
目次 頁次
中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
符號說明 ix
第一章 緒論 1
1.1 研究背景 1
1.1.1 有機過氧化物特性 2
1.2 研究目的 5
1.3 研究內容 5
第二章 文獻回顧 8
2.1 有機過氧化物特性 8
2.1.1 有機過氧化物定義 8
2.2 過氧苯酸第三丁酯 (TBPB) 特性 17
2.2.1 過氧苯酸第三丁酯之結構 17
2.2.2 物理化學性質 18
2.2.3 安全處置與儲存方法 18
2.2.4 運送資料 18
2.3 製程設計 19
第三章 理論及應用 20
3.1 恆溫分解動力學 20
3.1.1 n階反應機制 21
3.1.2 自催化反應機制 22
3.2 熱動力參數應用技術 24
第四章 實驗設備與方法 28
4.1 實驗儀器 28
4.1.1 微差掃瞄熱卡計 29
4.1.2 多頻道微量熱卡計 III 31
4.2 實驗設計與方法 34
4.2.1 微差掃瞄熱卡計 34
4.2.2 多頻道微量熱卡計 III 34
4.2.3 恆溫分解動力學估算 34
第五章 結果與討論 36
5.1 TBPB、BPO 與 TBPB+BPO 之 DSC 熱失控分解掃瞄 36
5.2 多頻道微量熱卡計 III 實驗結果 37
5.2.1 恆溫熱失控危害 37
5.3 恆溫反應熱力學及動力學探討 38
5.3.1 反應階數求法 38
5.3.2 活化能之計算 39
5.4 自加速分解反應溫度 40
5.4.1 自加速分解溫度計算 40
第六章 結論與建議 58
6.1 結論 58
6.2 建議 59
參考文獻 61
附錄一 物質安全資料表 64
附錄二 恆溫掃瞄於熱實驗後樣品圖 69
附錄三 自傳 70
[1]CCPS, 1995, “Guidelines for Chemical Reactivity Evaluation and Application to Process Design”, American Institute of Chemical Engineers (AIChE), New York.
[2]Common Laboratory Chemicals That Form Organic Peroxides, University of
California, San Diego, UCSD Blink, http://blink.ucsd.edu/Blink/External/Topics/Policy/0,1162,11661,00.html?coming_from=Content.
[3]Takayuki Ando, Yasuhiro Fujumeta and Shigeru Morisaki., 1987, DSC Data for Reactive Chemical Substances (1), Safety Document of the Japan Research Institute of Industrial Safety, RIIS-SD-87.
[4]Wataru Ando, 1992, Organic Peroxides.
[5]NFPA 43B. Code for the Storage of Organic Peroxide Formulations, National Fire Protection Association, Quincy, MA, USA.
[6]Chervin S. and Bodman Glenn T., 1997, “Mechanish and Kinetics of Decomposition from Isothermal DSC Data: Development and Application”, Process Safery Progress, Vol. 16, No.2, pp. 94–100.
[7]Sweden, Thermometric AB and Scitech Software AB (2007).
[8]Zwolenik J. J., 1967, “Photolytic Generation and Kinetic Electron Spin Resonance Spectrometry of Cumylperoxy Radicals”, The Journal of Physical Chemistry, Vol.71, No.8, pp. 2464–2469.
[9]Gustin J. L., 1993, ”Thermal Stability Screening and Reaction Calorimetry. Application to Runaway Reaction Hazard Assessment and Process Safety Management”, J.Loss Prev. Process Ind., Vol. 6, pp. 275–291.
[10]Barton J. and Rogers R., 1993, Chemical Reaction Hazards-A Guide, Published by Institution of Chemical Engineers, Davis Building.
[11]Grolmes Michael A., 1998, “Pressure Relief Requirements for Organic Peroxide and Other Related Compounds”, International Symposium on Runaway Reactions, Pressure Relief Design, and Effluent Handling, New Orleans, Louisiana, pp. 219–261.
[12]Kharasch M. S., Andrew Fono, and W. Nudenberg, 1951, ”The Chemistry of Hydroperixides. V.I. The Thermal Deconposition of α-Cumyl Hydroperoxides”, J. Org. Chem., Vol. 15, pp.113.
[13]Pantony M. F., Scilly N.F., and Bartan J.A., 1989,”Safety of Exothermic Reactions: A UK Strategy”, Plant/Operation Progress, Vol. 8, pp. 113–117.
[14]Mettler Company, TA8000 Operation Instructions.
[15]N. David Waters and L. John Paddy, 1988, “Equations for Isothermal Differential Scanning Calorimetric Curves”, Anal.Chem., Vol. 60, pp. 53–57.
[16]NFPA 43B. Code for the Storage of Organic Peroxide Formulations. National Fire Protection Association, Quincy, MA, USA.
[17]P. G. Laye and D. C. Nelson, 1989, ”Thermal Decomposition of Tertiary- Butylperoxybenzoate by Heat Flux Calorimetry”, Thermochimica Acta, Vol. 153, pp. 221–229.
[18]Chervin S. and Bodman Glenn T., 1999, “Phenomenon of Autocatalysis in Decomposition of Energetic Chemicals”. The 1st International Conference, Methodology of Reaction Hazards Investigation and Vent Sizing, Russia.
[19]The Isothermal Calorimetric Manual for Thermometric AB, Jarfalla, Sweden.
[20]Ando T., Fujimoto Y., and Morisaki S., 1991, ”Analysis of Differential Scanning Calorimetric Data for Reactive Chemicals”, Journal of Hazardous Materials, Vol. 28, pp. 251–280.
[21]Ando T., Fujumeta Y., and Morisaki S., 1987, DSC Data for Reactive Chemical Substances(1), Safety Document of the Japan Research Institute of Industrial Safety, RIIS-SD-87.
[22]United Nations, New York, 1990, “Recommendations on the Transport of Dangerous Goods, Tests and Criteria”, 2nd Ed., Committee of Experts on the Transport of Dangerous Goods, pp. 205.
[23]Jang W., Review A of DSC Kinetic Methods, Chemistry Department, Drexel University.
[24]Yih-Shing Duh , C.-S. Kao , C. Lee and S. W. Yu., 1997, “Runaway Hazard Assessment of Cumene Hydroperoxide from the Cumene Oxidation Process”, Trans IChemE , Vol. 75, No B, pp. 73–80.
[25]Yih-Shing Duh, C. S. Kao, H. H, Hwang and W. –L. Lee, 1998, November, “Thermal Decomposition Kinetics of Cumene Hydroperoxide”, Institution of Chemical Engineers, Vol. 76, Part B, pp. 271–276.
[26]林憲輝,2001,熱反應系統臨界失控條件及熱穩定性範圍之釐定與操作,博士論文,國防大學中正理工學院。
[27]經濟部工業局,2003,製程反應失控預防技術手冊,工業技術研究院—環境與安全衛生技術發展中心,10 月。
[28]行政院勞委會,2007,危險物及有害物通識規則。
[29]徐章家,1994,微差掃瞄熱卡計 (METTLER DSC25) 標準操作方法(技術手冊),經濟部技術處 財團法人工業技術研究院 環境與安全衛生技術發展中心。
[30]AIChE, 1995, Guidelines for Chemical Reactivity Evaluation and Application to Process Design, CCPS, New York, pp. 13–16.
[31]Fisher, H. G. and D. D. Goetz, 1991, “Determination of Self-accelerating Decomposition Temperatures using the Accelerating Rate Calorimeter”, J. Loss Prev. Process Ind., Vol. 4, pp. 305–316.
[32]Lanzhou Auxiliary Agent Plan China.
http://www.lanquan.com/product_detail.asp?id=83
[33]彭登志,2006,工安警訊-有機過氧化物安全儲存溫度,行政院勞委會勞工安全衛生研究所,4月。
[34]Cheng S.-Y., Tseng J.-M., Lin S.-Y., Gupta J. P. and Shu C.-M, 2008“Runaway Reaction on tert-Butyl Peroxybenzoate by DSC Test”, Journal of Thermal Analysis and Calorimetry, Vol. 93 pp. 121–126
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top