(3.92.96.236) 您好!臺灣時間:2021/05/07 01:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:古紹官
研究生(外文):Shao-guan Gu
論文名稱:強制通風應用於石化廠氣體洩漏擴散暨危害消減之初探
論文名稱(外文):The Application of Forced Ventilation to the Gas release/dispersionSimulation and Hazard Mitigation at a Petrochemical Plant Site
指導教授:易逸波易逸波引用關係
指導教授(外文):Yet-pole I
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:防災與環境工程研究所
學門:環境保護學門
學類:環境防災學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:160
中文關鍵詞:強制通風計算流體力學火焰加速模擬器(FLACS)氣體擴散
外文關鍵詞:computational fluid dynamicsflame accelerating simulator (FLACS)
相關次數:
  • 被引用被引用:12
  • 點閱點閱:474
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:99
  • 收藏至我的研究室書目清單書目收藏:1
本研究係利用以計算流體力學 (Computational Fluid Dynamics, CFD) 為主
之3D火災爆炸模擬軟體—FLACS,來評估石化廠製程區中可能發生的硫化氫洩
漏危害。吾人進行了一系列的氣體擴散模擬,以確實瞭解當外洩事故發生時之危
害特性及其風險。藉由FLACS之3D動態模擬,可輕易地讓使用者了解毒性氣體
外洩時不同大氣條件及建築物障礙對於下風處毒氣擴散所造成的影響,進而用來
評估意外發生時對於廠區人員之可能危害程度。研究結果發現當氣體外洩環境
(如大氣條件及環境風速)及危害消減措施(風扇通風方向)等參數發生改變後,
對於危害範圍及影響程度會造成相當大的差異。
本研究亦利用FLACS模擬探討以防爆型風扇作為危害消減設備的可行性,
進一步討論能否縮減毒性氣體外洩事故所可能造成的危害範圍及程度,以降低對
人員之危害。利用不同數目、位置與開口方向之機械風扇,配合單一自然風向,
嘗試找出不同消減設計中較具效果的組合,並比較風扇方向對危害消減之影響,
結果發現機械通風與自然風方向相反時,較能有效的消減毒性外洩的危害程度。
藉由CFD模擬與量化風險分析技術,於事前擬定適當之預防控制策略以降低風
險,才能確保石化廠區之安全性,以期建立零傷害的工作環境。
This research employed CFD based 3D gas fire/explosion simulation software,
FLACS, to assess the hazardous degree of hydrogen sulfide leakage within a
petrochemical process. A series of gas dispersion simulations were performed to
realize the hazardous characteristics and the corresponding risks of the release
accident. Through the 3D dynamic property of FLACS, user can easily understand
the influence of different atmospheric conditions and building obstacles on the
downwind area when toxic gas is released. The results can further be used to assess
the hazardous degree of personnel within the plant site when an accident takes place.
Study shows that the hazardous level and range can be greatly influenced when the
following parameters, such as gas leakage circumstances (atmosphere condition and
wind speed) and mitigation measures (number and direction of fans), have been
changed.
This research also employed FLACS simulation to explore the feasibility of
utilizing explosion-proof fans as mitigation equipment, and further discussed whether
the hazardous range and level of the toxic gas release accident can be reduced in order
to alleviate the impact on the personnel. Using mechanical fan of different number,
position, and ventilation direction combined with natural wind of certain direction,
this research attempted to find out the best combination from various mitigation
designs and to compare the influence of fan directions on hazard mitigation. The
result showed that the hazardous level of toxic release can be effectively alleviated
when the direction of mechanical ventilation was against the natural wind direction.
With the help of CFD simulation and quantitative risk analysis technique, different
loss prevention strategy can be tested via this study procedure in order to secure the
safety of a petrochemical process and establish an expected harm-free working
environment.
摘 要...............................................................................................................................i
ABSTRACT..................................................................................................................ii
目 錄.............................................................................................................................iv
表 目 錄......................................................................................................................vi
圖 目 錄.....................................................................................................................vii
符號說明.......................................................................................................................x
第一章 前言...............................................................................................................1
1.1 研究緣起........................................................................................................1
1.2 研究動機........................................................................................................2
1.3 研究目的........................................................................................................3
1.4 研究流程........................................................................................................3
第二章 文獻回顧.......................................................................................................5
2.1 化災回顧........................................................................................................5
2.1.1 國內外石化工業災變回顧.................................................................5
2.1.2 國內外典型毒性化學物質災害案例統計.........................................6
2.2 印度波帕爾(Bhopal)事件..............................................................................8
2.2.1 異氰酸甲脂 (Methyl Isocyanate, MIC) 簡介.................................9
2.2.2 事故背景............................................................................................10
2.2.3 事故描述............................................................................................12
2.2.4 事故原因分析...................................................................................14
2.3 工業通風概述..............................................................................................17
2.3.1 工業通風設備分類...........................................................................18
2.3.2 排氣扇種類.......................................................................................19
2.4 石油化學工廠概述......................................................................................20
2.4.1 石化儲槽簡介...................................................................................20
2.4.2 製程區設備簡介...............................................................................26
2.4.3 石化廠區的危害...............................................................................26
2.4.4 硫化氫(H2S)之特性..........................................................................27
2.5 事故後果模擬軟體介紹..............................................................................30
2.5.1 Chems-Plus 軟體...............................................................................31
2.5.2 ALOHA 軟體.....................................................................................33
2.5.3 SLAB 軟體.........................................................................................34
2.5.4 SAFETI 軟體.....................................................................................35
2.5.5 CPR 軟體...........................................................................................38
2.5.6 FDS 軟體............................................................................................40
2.5.7 FLACS 軟體......................................................................................42
2.5.8 國內外火災爆炸後果模擬研究之相關文獻...................................41
2.6 風險分析方法..............................................................................................44
2.6.1 危害辨識技術...................................................................................45
2.6.2 頻率分析技術...................................................................................48
2.6.3 後果分析技術...................................................................................50
2.6.4 風險量化技術...................................................................................54
2.6.5 國內外風險相關文獻.......................................................................59
第三章 研究方法.....................................................................................................63
3.1 石化廠區概述...............................................................................................64
3.2 研究步驟......................................................................................................70
3.2.1 後果分析............................................................................................70
3.2.2 頻率分析............................................................................................75
3.2.3 石化廠區風險量化...........................................................................75
3.2.4 個人風險............................................................................................77
3.3 三維模型之建構..........................................................................................78
3.3.1 網格獨立性測試...............................................................................84
3.3.2 監測點................................................................................................86
3.4 模擬事件......................................................................................................87
第四章 結果與討論...................................................................................................89
4.1 FLACS 後果分析結果.................................................................................89
4.1.1 FLACS 模擬情境設定.....................................................................90
4.1.2 製程區環境流場分析.......................................................................92
4.1.3 FLACS 模擬之後果分析..................................................................96
4.1.4 綜合比較..........................................................................................128
第五章 結論與展望.................................................................................................132
5.1 結論.............................................................................................................132
5.2 未來展望....................................................................................................133
參考文獻...................................................................................................................134
附錄一:氣雲形狀修改方法...................................................................................140
附錄二:Dump/Load 設定方法..............................................................................141
Abbasi, T., Abbasi, S.A., 2007, “The boiling liquid expanding vapour explosion
(BLEVE): Mechanism, consequence assessment, management”, Journal of Hazardous
Materials, Vol. 141, No.3, pp.489-519.
AIChE/CCPS, 2000, Guidelines for Chemical Process Quantitative Risk Analysis, 2nd
Ed., ISBN: 0-8169-0720-X.
Alderman, J.A., 1990, “PHA – A Screening Tool,” AIChE Spring National Meeting,
Orlando, March.
API Committee on Refinary Equipment, 1998, “Base Resource Document on Risk
Based Inspecton”, Prepared by DNV Industry Inc. Houston Texas.
Berg, J.T., et al., 2000, “A CFD layout sensitivity study to identify optimum safe design
of a FPSO”, Offshore Technology Conference, pp.12159.
CCPS, 1992, Guidelines for Hazard Evaluation Procedures with Worked Examples.
American Institute of Chemical Engineers, New York.
CCPS, 2000, Guidelines for Chemical Process Quantitative Risk Analysis, New York.
Considine, M., 1984, The Assessment of Individual and Societal Risks, SRD Report
R-310, Safety and Reliability Directorate, Warrington: UK Atomic Energy Authority.
Cozzani, V., Salzano, E., 2004a, The quantitative assessment of domino effect caused by
overpressure: Part II. Case studies, Journal of Hazardous Materials, Vol.17, pp. 81-94.
Cozzani, V., Salzano, E., 2004b. The quantitative assessment of domino effects caused
by overpressure Part I. Probit models. Journal of Hazardous Materials, Vol.17, pp.
67-80.
Cozzani, V., Salzano, E., 2004c. Threshold values for domino effects caused by blast
wave interaction with process equipment. Journal of Loss Prevention in the Process
135
Industries, Vol. 17, pp. 437-447.
Crowl, D.A., Louvar, J.F., 2002. Chemical Process Safety: Fundamentals with
Applications. Prentice-Hall, New Jersey, U.S.A.
Dharmavaram, S., Hanna, S.R., Hansen, et al., 2005, “Consequence Analysis - Using a
CFD Model for Industrial Sites”. Process Safety Progress Vol.24, pp. 316-327.
Drysdale, D., 1999, An introduction to fire dynamics. John Willy.
Eisenberg, N.A., 1975. Vulnerability Model "Simulation System for Assessing Damage
Resulting from Marine Spill", NTIS, USA.
Gupta, J.P., 2005, “Dilution with air to minimise consequences of toxic/flammable gas
releases”, Journal of Loss Prevention in the Process Industries, Vol.18, pp.502-505.
Høiset, S., Hjertager, et al., 2000, “Flixborough revisited - an explosion simulation
approach”, Journal of Hazardous Materials, Vol.77, pp. 1-9.
Hanna, S.R., Hansen, et al., 2004, “FLACS CFD air quality model performance
evaluation with Kit Fox, MUST, Prairie Grass, and EMU observations”. Atmospheric
Environment, Vol. 38, pp. 4675-4687.
Hansen, O.R., Talberg, O., et al., 1999, CFD-Based Methodology for Quantitative Gas
Explosion Risk Assessment in Congested Process Areas: Examples and Validation
Status, International Conference and Workshop on Modelling the Consequences of
Accidental Releases of Hazardous Materials, San Francisco, pp. 457-477.
Herrmann, D.D., 1999, Improved Vapor Cloud Explosion Predictions by Combining
CFD Modeling with the Baker-Strehlow Method, Modeling the Consequence of
Accidental Releases of Hazardous Materials, CCPS/AIChE, pp. 479-494.
Hjertager, B.H., 1985, “Computer simulation of turbulent reactive gas dynamics”,
Modeling, Identification and Control, Vol. 5, pp. 211-236.
Yet-Pole I, 2007, “Development and applications of CPR-A 3D consequence analysis
136
software for educational use”, Journal of Loss Prevention in the Process Industries, Vol.
20, pp. 251-259.
Yet-Pole I, 2009, “Applications of 3D QRA technique to the fire/explosion simulation
and hazard mitigation within a naphtha-cracking plant”. Journal of Loss Prevention in
the Process Industries, Vol.22, pp. 506-515.
Khan, F.I. & Abbasi, S.A., 1999, “Major accidents in process industries and an analysis
of causes and consequences”. Journal of Loss Prevention in the Process Industries,
Vol.12, pp.361-378.
Lawley, H.G., 1974, Loss Prevention: Operability Studies and Hazard Analysis.
Maremonti, M., Russo, G., et al., 1999, “Numerical simulation of gas explosions in
linked vessels”. Journal of Loss Prevention in the Process Industries, Vol.12, pp.
189-194.
Mearns, A.B., 1965, Fault Tree Analysis: The Study of Unlikely Events in Complex
Missile Systems, System Safety Symposium, pp. 5-10.
Mogensen, S., Hjertager, et al., 1999, Investigation of Gas Explosions in Open
Geometries Using EXSIM, Modeling the Consequence of Accidental Releases of
Hazardous Materials, CCPS/AIChE, pp. 421-434.
Morandi, R., Dattilo, F., et al., 1999, Investigation of an LPG Accident with Application
of Different Mathematical Models, Modeling the Consequence of Accidental Releases
of Hazardous Materials, CCPS/AIChE, pp. 571-582.
Osenbroch, J., Hjertager, et al., 2002, Computational Fluid Dynamics (CFD) Modeling
of Gas Dispersion in Offshore Modules, Risk, Reliability and security, CCPS/AIChE,
Jacksonville,Florida, pp. 233-246.
Patra, A.K., 2006, “Influence of wind speed profile and roughness parameters on the
downwind extension of vulnerable zones during dispersion of toxic dense gases”.
Journal of Loss Prevention in the Process Industries, Vol. 19, pp. 478-480.
137
Reynolds, J.T., 1995, “Risk-Based Inspection Improves Safety of Pressure Equipment”.
Oil & Gas Journal, pp. 37-40.
Rigas, F., Sklavounos, S., 2005, “Experimentally validated 3-D simulation of shock
waves generated by dense explosives in confined complex geometries”. Journal of
Hazardous Materials, Vol. 121, pp. 23-30.
Shirvill, L.C., 2004, “Efficacy of water spray protection against propane and butane jet
fires impinging on LPG storage tanks”. Journal of Loss Prevention in the Process
Industries, Vol.17, pp. 111-118.
Sklavounos, S. & Rigas, F., 2004, “Computer simulation of shock waves transmission in
obstructed terrains”. Journal of Loss Prevention in the Process Industries, Vol. 17, pp.
407-417.
Windhorst, J.C.A., 1999, “Deriving Engineering Specifications from Release Dispersion
and CFD Explosion”, Modeling the Consequence of Accidental Releases of Hazardous
Materials, CCPS/AIChE, pp. 495-514.
工研院環安中心,1997,李長榮化學工業股份有限公司林園廠液化石油氣儲槽風
險評估,工業技術研究院。
王易明,2007,石化工廠蒸氣雲爆炸後果分析模擬-以某石化工廠為例,國立雲林
科技大學,碩士論文。
何大成、徐一量,2001,氫氣儲槽爆炸後果模擬與分析,工業安全衛生技術研討
會。
李昌樺,2002,工業意外後果模擬軟體之研發,國立雲林科技大學,碩士論文。
沈建宏,2004,廠辦建築防火安全評估法之研究,國立中興大學,碩士論文。
易逸波,2004,量化風險評估技術講義,國立雲林科技大學,環境與安全衛生工
程系。
138
易逸波、蔡槐庭、何大成,1999,桃園縣觀塘工業區開發計劃量化風險評估工作
結案報告,工業技術研究院。
林文海、賴全裕、呂牧蓁,2004,作業環境控制-通風工程,新文京開發出版股份
有限公司。
林珈均,2004,製程工廠之典型毒性化學物質洩漏擴散後果模擬及國內外緊急應
變系統之比較,國立雲林科技大學,碩士論文。
林聖祐,2007,三維風險分析技術在半導體廠房火災爆炸暨損失預防之應用,國
立雲林科技大學,碩士論文。
施元斌,2002,“風險分析方法於工廠之應用",工業安全科技,42卷,24期,
頁21-28。
袁明豪等人,2004,“重大化災回顧系列(八):印度波帕(Bhopal)異氰酸甲酯
(Methyl Isocyanate)外洩事件之探討",化工,51卷,1期,頁70-83。
張榮興、謝伊芬、許育銘,2001,運用量化風險分析技術於給水廠廠內液氯儲槽
及氯氣設備之研究,國立雲林科技大學,實務專題。
湯文烈,1990,建築物防排煙設備設計之研究,中央警察大學,碩士論文。
黃清賢,1996,工業安全,三民書局股份有限公司。
經濟部工業局,2004,重石化廠區安全管理。
廖宏章,1998,波帕事件十四週年回顧與省思,工業安全衛生速報,工業技術研
究院,32卷,頁 9-12。
劉維義、呂信忠、陳俊勳,2005,淺談工業火災風險分析概論,消防與防災科技,
21卷,頁 95-98。
139
蔡嘉一,2001,工業安全與緊急應變概論,歐亞書局。
蔡嘉一,2005,印度波帕爾市化學災難二十年後的工安檢討-台中港內港設置LNG
接受站與儲槽之環評缺失,工業污染防治,96卷,4期,頁97-107。
鄭德隆,2005,三維風險分析技術之建立及其在石化廠區危害物質外洩事故模擬
之應用,國立雲林科技大學,碩士論文。
賴明宏,2006,我國化學災害規模分級及其應變模式與搶救能力之評估與整合機
制,內政部消防署。
薛朝鴻,2004,性能式煙控與避難運用在排煙室之研究,國立雲林科技大學,碩
士論文。
鍾基強,2003,工業通風設計概要,全華科技圖書股份有限公司。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔