(3.236.214.19) 您好!臺灣時間:2021/05/06 21:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:葉秀年
研究生(外文):Hsiu-Nien Yeh
論文名稱:人臉取像器暨膚質分析系統之設計與實現
論文名稱(外文):Design and Implementation of a Facial Image Acquisition and Analysis System
指導教授:吳先晃
指導教授(外文):Hsien-Huang Wu
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:通訊工程研究所碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:93
中文關鍵詞:毛孔皺紋痘疤膚斑人臉取像器膚質分析膚質特徵影像處理
外文關鍵詞:Skin analysisPockimage processingFacial Image AcquisitionSkin FeaturesSpotPoreWrinkle
相關次數:
  • 被引用被引用:0
  • 點閱點閱:684
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
目前美容醫學的技術逐漸受到青睞,且在每年的市場上,占有極高的比例,表示著越來越多的人,越注重自己的的審美外觀,也就是因為如此,其之所具有的重要性與需求性亦日漸提高。
但是現有美容醫學肌膚分析系統的價格過於昂貴,非一般民眾或是小公司所能負擔,且大部份的美容肌膚檢測系統,大多都是對人臉肌膚作物理接觸的檢測,而非依靠影像處理的方式來判斷,物理檢測方式大多為觸碰式的檢測儀器,在衛生安全上很難兼顧完備,因此,透過影像處理的方式來對人臉肌膚進行有效的判斷,實是目前美容醫學產業中,既安全又符合經濟原則的方式之一。
有鑑於此,本論文中提出結合了數位相機和自行設計的取像設備環境去進行人臉肌膚的拍攝,取得的高解析度影像在透過病灶分析演算法進興偵測,不但能有效的顯示出使用者的病灶特徵,還能透過內建資料庫系統進行整合,依據不同日期依序的歸檔記錄,更添加了許多的附屬功能,讓整套系統更趨於完備。
而本文中將針對此人臉取像美容醫學分析系統進行介紹,包括相機的控制、即時影像的截取、演算法架構,及維持光源平衡的取像設備等,都會進一步詳細的剖析描述。
Recently, beauty culture medical technology is gradually undesirable. And also, it holds the extremely high proportion of this industry every year. It means that more and more people pay great attention to own esthetic outward appearance. Because of this reason, it becomes to get more importance and requirement day after day.
However, the prices of the existing cosmetology medicine flesh analysis system are too expensive that the mass population or the small company can not bear. And also, the most cosmetology flesh examination system make the examination of physical contact on human faces. They don’t be judged by the phantom processing. Most of the physical examination is moves -like instrumentation. It is very difficult to give dual attention completely in the hygienic security. Therefore, the penetration phantom processing on the human face becomes one of the effective judgments which is getting both the security and economic purpose in this beauty culture medical industry.
As the result of the foregoing reason, in this article, it proposed unified several cameras and independently design equipments to carry on the photography of the human faces. It obtains the fine resolution phantom which can be detected by the infection analysis calculating method. Not only can it effectively display the demonstration of infection characteristic of users, but also it can be constructed by the internal information system. According to the filing-up records on different date, it can increase more attached functions, and let the entire wrap system tend to more completely.
In this article, it will present the introduction of this face aesthetic medicine analysis system, which is including control camera, hunerus real-time Imaging, algorithm schema, and the equipments of maintaining the balance of opinins diodes''temperature, etc. There will be further more detailed description in this article.
中文摘要 i
英文摘要 ii
誌謝 iv
目錄 v
圖目錄 vii
表目錄 viii
第一章 緒論 1
1.1研究背景與動機 1
1.2研究方法概述 5
1.3論文架構 6
第二章 基礎原理介紹 7
2.1皮膚的構造 7
2.1.1 膚斑 8
2.1.2面皰 10
2.1.3毛孔 11
2.1.4皺紋 12
2.2色彩空間 13
2.2.1 RGB色彩模型空間 15
2.2.2 HSV色彩模型空間 17
2.2.3 CMYK色彩模型空間 19
2.2.4 L*A*B色彩模型空間 19
2.3濾波器 22
2.3.1低通濾波 22
2.3.2高通濾波 23
2.4邊緣偵測 24
2.4.1 Canny 24
2.4.2 Sobel 25
2.5影像分割(Image Segmentation) 26
2.5.1二值化(Binary Thresholding) 26
2.5.2自動閥值 26
2.5.3 自適應性門檻值 28
2.6 Morphological影像處理 29
2.6.1 膨脹(Dilate) 30
2.6.2 侵蝕(Erosion) 30
第三章 即時影像擷取設備 32
3.1 取像設備-G9相機 32
3.2 即時動態影像擷取功能 35
3.3 取像外型設計 36
3.4 電腦硬體系統傳輸設備 39
3.5 硬體系統設備(顯示卡) 42
3.6 電腦畫面環境 39
第四章 膚質分析演算法 44
4.1 膚斑偵測 45
4.1.1 L angleA angleB色彩空間置換 45
4.1.2膚斑分析演算法 48
4.2 痘疤偵測 51
4.2.1 YCbCr色彩空間置換 51
4.2.2 痘疤分析演算法 51
4.3 毛孔偵測 54
4.3.1 傅立葉轉換 55
4.3.2 巴特沃斯高通濾波器 56
4.3.3 毛孔分析演算法 56
4.3.4 毛孔分析結果圖 58
4.4 皺紋偵測 62
4.4.1 延展度 63
4.4.2 皺紋分析演算法 65
第五章 實驗結果及未來研究方向 69
5.1 實驗結果概述 69
5.2 檢測結果分析比較 69
5.2.1 膚質分析VISIA系統結果比較圖 69
5.2.2 本實驗結果圖 73
5.3 結果討論 77
5.4 未來展望 78
參考文獻 79
[1] 陳志成,”人臉膚質檢測系統”,國立雲林科技大學碩士論文。
[2] O. G. Cula and K. J. Dana, “Skin Texture Modeling,” International Journal of Computer Vision, vol. 62, pp.97, 2004.
[3] R. W. Conners and C. A. Harlow, “Theoretical comparison of texture algorithms,” IEEE Trans. Pattern Anal. Machine Intell., vol. 2, pp.204, May 1980.
[4] M. Chantler, “Why illuminant direction is fundamental to texture analysis,” IEEE Proc. Vision Image Signal Process. 142, 199-206, 1995.
[5] T. Igarashi, K. Nishino, and S. K. Nayar, “The Appearance of Human Skin,” Technical Report:CUCS-024-05 Department of Computer Science Columbia University, 2005.
[6] J. Kovač, P. Peer, and F. Solina, “Human Skin Colour Clustering for Face Detection,” EUROCON, 2003.
[7] J. Liu, K. Bowyer, D. Goldgof, and S.A. Sarkar, "A comparative study of texture measures for human skin treatment,” Information, Communications and Signal Processing Vol. 1, Sep. 1997.
[8] X. Lladó, M.Petrou, and J. Martí, “Surface texture recognition by surface rendering,” Optical Engineering, Vol. 44, Mar. 2005.
[9] I. Maglogiannis and D. I. Kosmopoulos, “A Digital Acquistion System for Skin Lesions,” Proceedings of SPIE Vol. 5034, 2003.
[10] D. S. Raicu, J. D. Furst, D. Channin, D. H. XU, A. Kurani, and S. Aioanei, “A Texture Dictionary for Human Organs Tissues’ Classification,” Proceed. of the 8th World Multiconf. on Syst., Cyber. and Inform., Jul. 18-21, 2004.
[11] J. Serup, “Efficacy testing of cosmetic products,” Skin Research and Technology, Vol.7 Issue 3, p141, Aug. 2001.
[12] T. Tanaka and T. Murase, "Classification of sarcomas using textural features," Engineering in Medicine and Biology Society, 2000. Proceedings of the 22nd Annual International Conference of the IEEE, Jul. 2000.
[13] S.E. Umbaugh, R.H. Moss, and W.V. Stoecker, “Automatic color segmentation of images with application to detection of variegated coloring in skin tumors,” IEEE Engineering in Medicine and Biology Magazine, Vol. 8, pp. 43-52, Dec. 1989.
[14] T. Tanaka, S. Torii, I. Kabuta, K. Shimizu, M. Tanaka, and H. Oka, "Pattern Classification of Nevus with Texture Analysis," IEEE Proc. EMBS., Sep. 1-5, 2004.
[15] J. S. Weszka, C. R. Dyer, and A. Rosenfeld, “Comparative study of texture measures for terrain classification,” IEEE Trans. Syst., Man, Cybern., vol. SMC-6, pp. 269, 1976.
[16] R. C. Gonzales and R.E. Woods, Digital Image Processing, Prentice Hall, 2002.
[17] 吳敏淇,皮膚美容診療室,上旗文化,2004年。
[18] 繆紹綱編著,數位影像處理活用-Matlab,全華科技圖書股份有限公司,1999年。
[19] 新興熱門行職業介紹專刊-工作大贏家,行政院勞委會職訓局,2005年11月號。
[20] 林姿妙,”以資訊技術建構台灣地區成年女性膚質老化程度之預測模型”,元智大學碩士論文。
[21] 莊家和,”紋路特徵編碼法法於紋路分析之研究”,南華大學碩士論文。
[22] 唐德誠,”灰度共現矩陣於多波段多極化SAR影像分類之研究”,國防大學中正理工學院碩士論文。
[23] OpenCV News Group, http://groups.yahoo.com/group/OpenCV/
[24] Gray balance: A key element in color reproduction, http://www.newsandtech.com/issues/2002/02-02/ifra/02-02_greybalance.htm
[25]多功能皮膚檢測系統之課程教案,儀器操作使用指南及使用效益,http://www.kmu.edu.tw/~cpharm/images2/11_25/3-2-2.htm
[26] C. Garcia, and G.Tziritas. “ Face Detection Using Quantized Skin
Color Regions Merging and Wavelet Packet Analysis.” in IEEE
Transactions on Multimedia vol. 1 , No. 3 , pp. 264-277, 1999.
[27] 色彩技術基礎與理論,
http://www.keyin.cn/input/Article/Html/2005-07-15/2005071540297.html
[28]多功能皮膚檢測系統之課程教案,儀器操作使用指南及使用效益,http://www.kmu.edu.tw/~cpharm/images2/11_25/3-2-2.htm
[29]皮膚粗糙度分析系統之課程教案,儀器操作使用指南及使用效益,http://www.kmu.edu.tw/~cpharm/images2/11_25/3-2-3.htm
[30] VISIA Complexion Analysis
http://www.visia-complexion-analysis.com/visia-complexion-analysis.asp
[31] VGA端子腳位查詢
http://zh.wikipedia.org/wiki/VGA%E7%AB%AF%E5%AD%90
[32] 陳會安, "SQL Server 2008資料庫系統設計與開發實務", 學貫行銷, 2009 年.
[33] 鍾國亮, “影像處理與電腦視覺,"台灣東華書局股份有限公司, 2002 年.
[34] 連國珍, "數位影像處理," 儒林圖書有限公司,1992 年9 月.
[36] 佳能Cannon PowerShot G9相機
http://www.rainbowphoto.com.tw/g9/main_g9.htm#top
[37] 黃欣慧,”影像處理技術應用於人臉膚質特徵之研究”,元智大學資管碩
士論文。
[38] 鄭凱方,”人臉可辨識度計算用於監控系統中人臉正面最佳影像判定”,
中央大學資訊工程研究所碩士論文
[39] P.Smith , M.Shah, N.d.V.Lobo, “Determining Driver Visual Attention With
One Camera” Intelligent Transportation Systems, IEEE Transactions Vol.4 ,
Issue 4, pp.205 – 218 , 2003.
[40] C. Garcia, and G.Tziritas. “ Face Detection Using Quantized Skin Color Regions Merging and Wavelet Packet Analysis.” in IEEE Transactions on Multimedia vol. 1 , No. 3 , pp. 264-277, 1999.
[41] K. K. Sung , T. Poggio, “Example-based learning for view-based human face detection”, in Proc. Image Understanding Workshop, pp.843-850 , 1994.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔