跳到主要內容

臺灣博碩士論文加值系統

(18.206.76.226) 您好!臺灣時間:2021/07/30 23:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林宇軒
研究生(外文):Yu-Hsuan Lin
論文名稱:供應鏈資訊分享於隨機模式之探討
論文名稱(外文):The Study of Information Sharing in a Stochastic Supply Chain Model
指導教授:陳雲岫陳雲岫引用關係
指導教授(外文):Yun-Shiow Chen
學位類別:碩士
校院名稱:元智大學
系所名稱:工業工程與管理學系
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:84
中文關鍵詞:長鞭效應資訊分享資訊未分享供應鏈
外文關鍵詞:Bullwhip effectInformation sharingNo information sharingSupply chain
相關次數:
  • 被引用被引用:0
  • 點閱點閱:136
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在現今供應鏈組織裡,各成員仍是以自身獲得最大利益為首要考量,容易造成成員間不良的協調,導致「長鞭效應」的現象發生,這樣的衝擊將會造成供應鏈組織的成本上升及不良的顧客服務。若要有效地將商流、金流、產品流和資訊流予以統整,並進而降低「長鞭效應」的衝擊,成員間資訊分享,是解決方案之ㄧ。如此可將資訊透明化,讓上下游廠商都能掌握彼此的資訊,使整體供應鏈運作得以發揮最大功用。
本研究主要探討供應鏈之成員,在無資訊分享模式與完全資訊分享模式下,整體總系統成本的比較。研究對象是一個三階層供應鏈,零售商、製造商和運輸商;研究模式是在分散決策制定下,即所謂的無資訊分享,假設零售商需求率是服從均勻分配,產生最佳的補貨時程,並驅動上游製造商和運輸商完成產品的製造和運送;而另一方面,在中心決策制定下,亦即所謂的完全資訊分享,透過發展單一成員的總系統補貨模型,主要目標是使整體系統成本最小化,並產生整體系統的最佳補貨時程。
本研究主要目的,是將三階層供應鏈建構成本模式後,透過需求率服從均勻分配,長時間觀察無資訊分享和完全資訊分享對供應鏈總成本的影響程度。另外,本研究亦進行不同情境下成本對於參數改變的敏感度分析。在數據分析過程中,當需求率服從均勻分配後,迭代次數愈多,不論是在無資訊分享或完全資訊分享,總系統平均成本將開始趨於穩定。在敏感度分析的部份,對零售商每單位訂購設置成本、製造商每單位製造成本和運輸商每單位運送成本之參數進行調整,發現不論是在無資訊分享和完全資訊分享下,總系統平均成本會隨著零售商每單位設置成本、製造商每單位製造成本和運輸商每單位用送成本的增加而增加。整體而言,對於需求率服從均勻分配的條件下,研究結果顯示,完全資訊分享下的總系統平均成本,會比無資訊分享下的總系統平均成本來的低。
Nowadays, the members in the supply chain always consider their individual benefits from a traditional structure viewpoint of supply chain. However, bullwhip effect may easily displace the demand from the real one. This phenomenon may result in large distortion in the members of supply chain, high costs and poor customer service. Aggregating the information flow, money flow, business flow and production flow to prevent from “Bullwhip Effect” is one efficient approach, so called information sharing. If the information shared among all members in the supply chain, then upstream member could not only realize the downstream member’s need but also reduce the bullwhip effect generated by blindness.
The purpose of this research is to study costs of the difference between information sharing and no information sharing in a supply chain. We consider a structure involving three members, retailer, manufacturer and transporter in supply chain. We assume that the demand rate follows a uniform distribution between (0, 1) and set two scenarios in our study. One scenario is concerning decentralized policy, named as NI (no information sharing), with which the retailer generates the optimal schedule provoking the manufacturer and transporter to instantly accomplish the manufacturing and transportation. The other scenario focuses on centralized concept, referred as FI (full information sharing), for which the system coordinated replenishment model with minimizing total cost of whole system. Besides comparing the system’s costs between two scenarios in a long term, we also investigate the sensitive analysis based on various parameter setting.
Numerical study shows that the total cost of whole system reaches stable and convergent when the replications are near 100,000 times. For the sensitive analysis, we could observe that if we try to adjust the parameters, like the ordering setup cost of the retailer, per unit cost of manufacturing and per unit cost of transportation. The cost of whole system will be increased obviously. In conclusion, the total cost of NI system is larger than the one of FI system under uniformly demand rate assumption.
摘要i
ABSTRACTiii
致謝v
目錄vi
圖目錄viii
表目錄ix
第一章 緒論1
1.1 研究背景與動機1
1.2 研究範疇6
1.3 研究架構8
第二章 文獻探討10
2.1 長鞭效應10
2.2 資訊分享20
2.3 資訊分享的種類27
2.3.1 無資訊分享28
2.3.2 完全資訊分享31
2.4 Hariga’s Model34
第三章 模型建構43
3.1 前言與模型基本假設43
3.2 供應鏈整合策略之模型44
3.2.1 無資訊分享策略 (No information sharing, NI)45
3.2.2 完全資訊分享策略 (Full information sharing, FI)51
第四章 實驗數據分析56
4.1 實驗參數設定與分析56
4.1.1 小結64
4.2 敏感度分析65
4.2.1 零售商敏感度分析65
4.2.2 製造商敏感度分析67
4.2.3 運輸商敏感度分析69
4.2.4 小結70
第五章 結論與建議71
5.1 研究結果71
5.2 未來研究方向72
參考文獻74
附錄一 無資訊分享下的數值計算 (1/2)77
附錄一 無資訊分享下的數值計算 (2/2)78
附錄二 完全資訊分享下的數值計算 (1/2)79
附錄二 完全資訊分享下的數值計算 (2/2)80
附錄三 無資訊分享下的每單位製造成本的敏感度數值分析81
附錄四 完全訊分享下每單位製造成本的敏感度數值分析82
附錄五 無資訊分享下的每單位運送成本的敏感度數值分析83
附錄六 完全訊分享下的每單位運送成本的敏感度數值分析84
1.鄭穎聰 (1999),供應鏈長鞭效應因應政策之研究,國立台北科技大學/生產系統工程與管理研究所碩士論文。

2.王富恩 (2003),長鞭效應在不同需求型態下關鍵影響因素之探討,國防管理學院後勤管理研究所碩士論文。

3.邱乾銘 (2004),供應鏈長鞭效應之探討,國立高雄第一科技大學運輸與倉儲營運系碩士論文。

4.何致華 (2005),固定生產率下預測方法與長鞭效應之研究,國防大學國防管理學院後勤管理研究所碩士論文。

5.葉蕙華 (2006),Information sharing and decision-making coordination in supply chain(供應鏈中資訊分享與決策制定之協調),國立中央大學工業管理研究所碩士論文。

6.Chu, Wai Hung Julius& Lee, Ching Chyi. Strategic information sharing in supply chain. European Journal of Operational Research, Vol. 174, pp. 1567-1579. (2006).

7.Fiala, P. . Information sharing in supply chains. The International Journal of Management Science, 33, 419-423.(2005).

8.Gavirneni , Srinagesh& Kapuscinski, Roman& Tayur, Sridhar. Value of Information in Capacitated Supply Chain. Management Science, Vol. 45, 16-24.(1999).

9.Grean, M. & Shaw, M.J. . Supply-Chain Integration through Information Sharing: Channel Partnership between Wal-Mart and Procter & Gamble, Center for IT and e-Business Management, University of Illinois, Urbana-Champaign, IL, available at: http://citebm.cba.uiuc.edu/IT-cases/Graen-Shaw-PG.pdf (accessed September 9), pp.21.(2002).

10.Gavirneni, Srinagesh. Price fluctuations, information sharing, and supply chain performance. European Journal of Operational Research, 174, 1651-1663.(2006).

11.Hariga, M. . The inventory replenishment problem with a linear trend in demand. Computers industry Engineering, Vol. 24, No. 2, 143-150.(1993).

12.Kimbrough, Steven O. & Wu, D.J. & Zhong, Fang. Computers play the beer game: can artificial agents manage supply chains?. Decision Support Systems, 33, 323-333.(2002).

13.Kelepouris, Thomas& Miliotis, Panayiotis& Pramatari, Katerina. The impact of replenishment parameters and information sharing on the bullwhip effect: a computational study. Computers and Operations research, Vol. 35, pp. 3657-3670

14.Lee, Hau L. & Padmanabhan V. & Whang, S . . Information distortion in a supply chain: The bullwhip effect. Management Sci. 43546–558. (1997a).

15.Lee, Hau L. & Padmanabhan V. & Whang, S. . The bullwhip effect in supply chains. Sloan Management Rev. 3893–102. (1997b).

16.Lee, Hau L. & Whang, Seungjin. Information sharing in a supply chain. International Journal of Technology Management, 20 (3/4), pp. 373-387. (2000)

17.Lee, Hau L. & So, Kut C.& Tang, Christopher S. . The Value of Information Sharing in a Two-Level Supply Chain. Management Science, Vol. 46, 626-643. (2000).

18.Lau, Jason S.K. & Huang, George Q. & Mak, K.L. . Web-based simulation portal for investigating impacts of sharing production information on supply chain dynamics from the perspective of inventory allocation. Integrated Manufacturing Systems, Vol. 13, 345-358. (2002).

19.Lee, Hau L. & Padmanabhan,V. & Whang, S. . Comments on “Information Distortion in a Supply Chain: The Bullwhip Effect”. Management Science, Vol. 50, 1887-1893. (2004).

20.Lihong, Dong. Analyze on Demand Information Sharing to the Bullwhip Effect in Simple Supply Chain. Service System and Service Management, 1421-1426. (2006).

21.Li, Suhong & Lin, Binhsan. Accessing information sharing and information quality in supply chain management. Decision Support Systems, Vol. 42, pp. 1641-1656. (2006).

22.Lu, J& Humphreys, P. & McIvor, R.& Maguire, L. . Employing Genetic Algorithms to Minimize the Bullwhip Effect in a Supply Chain. Industrial Engineering and Engineering Management, 1527-1531. (2007).

23.Mitra, A. &Cox,J.F. &Jesse Jr.,R.R. . A note on determining order quantities with a linear trend in demand. J. Opl. Res. Soc. 35, 141-144.(1984).

24.Metters, R. . Quantifying the bullwhip effect in supply chains. Journal of Operations Management, 15, 89-100. (1997).

25.O’DONNELL, T. & MAGUIRE, L. & MCIVOR, R. & HUMPHREYS, P. . Minimizing the bullwhip effect in a supply chain using genetic algorithms. International Journal of Production Research, vol. 44, 1523-1543. (2006).

26.Sterman, J.D. . Modeling managerial behavior: Misperceptions of feedback in a dynamic decision making experiment. Management Science, 35(3), 321-339. (1989).

27.Sahin, Funda & Robinson, E. Powell. Flow Coordination and Information Sharing in Supply Chains: Review, Implications, and Directions for Future Research. Decision Sciences, Vol 33, no.4, 505-536. (2002).

28.Sahin, Funda & Robinson, E. Powell. Information sharing and coordination in make-to-order supply chains. Journal of Operations Management, Vol. 23, pp. 579-598. (2005).

29.Wright, David & Yuan, Xin. Mitigating the bullwhip effect by ordering policies and forecasting methods. International Journal of Production economics, 113, 587-597. (2008).

30.Yu, Zhenxin & Yan, Hong & Cheng, T.C. Edwin. Benefits of Information Sharing with Supply Chain Partnerships. Industrial Management & Data Systems, 114-119. (2001).

31.Zhao, Wendan & Wang, Dingwei. Application of Information Sharing to Bullwhip Effect Restraining. Control and Decision Conference, 1143-1146. (2008).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊