跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/03 17:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:邱智淳
研究生(外文):Chih-Chun Chiu
論文名稱:以本體論為基礎進行模糊推論流程之規劃與執行
論文名稱(外文):Ontology-Based Planning and Execution of Fuzzy Inference Flow
指導教授:范治民
指導教授(外文):Chih-Min Fan
學位類別:碩士
校院名稱:元智大學
系所名稱:工業工程與管理學系
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:169
中文關鍵詞:本體論模糊規則認知圖網路本體語言模糊推論
外文關鍵詞:OntologyRule Based Fuzzy Cognitive MapsWeb Ontology LanguageFuzzy Inference
相關次數:
  • 被引用被引用:0
  • 點閱點閱:196
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
  在21世紀知識經濟體系下,知識被看待為創新、進步以及競爭的重大力量。此環境下企業面臨的問題在於如何整合散落知識,並發展一系統模擬人類智慧給予決策,使系統能夠應用於各個組織,提升系統價值與減少企業資源浪費。因此一個以專家系統為背景的架構被提出,稱做以本體論為基礎之模糊推論(Ontology-Based Fuzzy Inference, OFI)系統,也就是第一代OFI系統。
本研究提出第二代OFI系統架構,取模糊規則認知圖(Rule Based Fuzzy Cognitive Maps, RBFCM)作為推論方法,並發展動態多重模糊推論滿足不同起始資訊情況的半導體錯誤診斷問題。第二代OFI系統以第一代OFI系統為發展基礎,致力於多種領域知識建模,檢視原始系統物件對於動態多重模糊推論方法的支援性,有效提昇系統彈性與應用層面。
  第二代OFI系統主要分作兩大部份,整合本體論模型與可組建系統物件。利用網路本體語言(Web Ontology Language, OWL)建構與整合產業領域、模糊理論以及推論方法之知識,使知識具備分享與再利用特性,供各組織加以運用,故稱作整合本體論模型;可組建系統物件是利用Java程式語言開發之推論引擎,主要特色在於操控知識庫中推論方法知識,讓使用者針對不同問題選擇適合之推論方法,或者自行組裝運用。在整合本體論模型部份,延續第一代OFI系統,稍微更動知識概念;可組建系統物件是本研究改革重點,將焦點放於各個物件之彈性檢視,並希望系統物件可支援動態多重模糊推論。
  因此提出三項問題:(1) 系統功能物件無法重複使用:由於設計方式不佳,使得相同計算邏輯的概念無法以一物件涵蓋,無形中造成資源的浪費。(2) 系統資料物件生成方式缺乏彈性:資料本體論與資料物件無法同步更新,一旦資料本體論中有所變動,資料物件也必須更改,造成資訊承接錯誤或是引發系統缺乏彈性問題。 (3)無法動態規劃多次模糊推論與執行:第一代OFI系統也許可透過設定流程知識完成RBFCM推論,但只要因素類型改變或因素相互關係改變,推論流程知識也必須重新人為規劃,造成時間上的耗費。
  針對上述問題提出三項設計來進行改善,提昇系統彈性並可執行不同情況下的RBFCM推論,三項設計分別為(1) 彈性功能物件:相同概念之功能只用一個功能物件與之對應,減少重複概念的功能物件,提昇系統穩定與彈性程度。(2)通用資料物件:利用Vector的二維陣列作為資料物件基本型態,讓資料本體論與資料物件同步更新,提昇系統彈性化程度。 (3)多重OFI流程規劃者:使系統可自動規劃並執行多次模糊推論流程,並且當評估因素數量或因素關係改變時,系統依然可以自動執行,不需要重新設定推論流程。
  落實上述三種設計並整合系統後,將其套用在五種情境模式:兩因素類型-單一路徑、三因素類型-單一路徑、三因素類型-多路徑、因素類型數目對時間的影響以及單一類型因素數目對時間的影響。利用前三大情境驗證系統的可行性與可擴充性;得知當擴充因素或路徑後,仍然能夠得到正確的規劃與執行結果,證實系統的確能支援動態多重模糊推論的規劃與執行,並且其擴充能力也是足夠的。藉由後兩大情境檢視因素類型數目與單一類型因素數目對系統執行時間的影響,得知系統執行時間的多寡是取決於因素數目;。綜合上述,企業能夠將此系統運用於各個組織,以分享與再利用特性減少資源浪費,降低系統開發成本。
  “Knowledge” is the main driving force for innovation, advancement, and competitiveness in the 21st century knowledge-based economy system. The challenges of which the industry will have to face in this economy system include, integrating scattered know-how, developing a simulated AI system for decision making, applying the system to individual organizations, raising the value of the system, and limiting a waste of corporate resources. As a result, a system with an expert system as the backbone infrastructure was proposed, known as Ontology-Based Fuzzy Inference (OFI) system, which is also the first generation OFI system.
  This thesis proposes a second generation OFI system infrastructure using the Rule Based Fuzzy Cognitive Maps (RBFCM) as the method of inference, and further expands to include multiple dynamic fuzzy inferences for the different initial conditions of incorrectly diagnosed semiconductor failures. The second generation OFI system is formulated around the foundation built by the first generation OFI system and focuses on constructing the knowledge base module for different application fields. This research also inspects the amount of support on the methods of multiple dynamic fuzzy inferences provided by the original system objects, for effective improvements on system application and flexibility aspects.
  The development of second generation OFI system is two-fold: Integrated OFI Ontology and Configurable System Object. The purpose of Integrated OFI Ontology is for knowledge sharing and reuse, which is enabled by using Web Ontology Language (OWL) to construct and integrate the knowledge from different fields of the industry, fuzzy theories, and inference methods. Configurable System Object is for the manipulation of various inference methods from the knowledge database. Users will be able to select the most appropriate inference method for different problems, or they can fabricate their own solution.
  This research aims at designing formal specifications of Integrated OFI Ontology and developing Configurable System Object to support multiple dynamic fuzzy inferences. Three main issues of the OFI system are first addressed: (1) System Function Object is not reusable: improper design leading to identical logical concepts that cannot be covered by a single object, resulting in the waste of system resources; (2) System Data Object is not flexible during declaration: Data Ontology and Data Object cannot be updated in sync, once data ontology has been modified, the data object will also have to be changed, thereby resulting in information disconnect error or issues with system flexibility; (3) Unable to support the dynamical planning and execution of multiple OFI instances: even though the first generation OFI system might be able to complete the RBFCM inference through configuration of the process knowledge base, changes to the element type or dependencies will require manual re-planning of the inference process knowledge, of which the entire process is time consuming.
  Three design improvements are proposed to counteract the problems pointed out above and to improve system flexibility on the execution of the RBFCM inference based on different conditions. The three designs are (1) Flexible Function Object: functions with identical concepts correspond to a single function object, thereby reducing function objects of duplicate concepts, improving system reliability and flexibility; (2) Generic Data Object: a 2D matrix using vectors is defined as the generic form of data objects, where Data Ontology and Data Object may be updated in sync thereby improve system flexibility; (3) Multiple OFI Flow Planner: the system will be able to automatically plan and execute multiple fuzzy inferences, as well as evaluate the changes in number or dependencies of factors without the need to reconfigure the inference process flow.
  Implementing the three design changes mentioned above to the system and applying to the following five scenarios: two factor types – single path, three factor types – single path, three factor types – multiple path, influence of quantity of factor types on time, and influence of quantity of single factor types on time. The former three scenarios may be used to verify the practicability and expandability of the system. If the correct planning and execution results may be expected after the expansion of factors or paths, then the system is proved to be capable of supporting the planning and execution of multiple dynamic fuzzy inferences, as well as proving the expandability of the system. The latter two scenarios may be used to inspect the influence of quantity of factor types and single factor types on system execution time, where system execution time will see a rise with an increase of factors. In summary, enterprises will be able to adopt this system to each of their individual operating organizations for sharing and reusing of the knowledge database. Valuable corporate resources will no longer be wasted and system development costs can also be reduced.
第一章 緒論---1
1.1 研究背景與動機---1
1.2 研究目的---4
1.3 研究方法---5
1.4 研究架構---8
第二章 文獻探討---10
2.1 知識表達---10
2.1.1 邏輯式知識表達法---12
2.1.2 規則式知識表達法---13
2.1.3 語意網路知識表達法 ---14
2.1.4 框架式知識表達法---15
2.2 本體論---17
2.2.1 本體論的定義---17
2.2.2 本體論呈現知識之概念---19
2.2.3 本體論與語意網的關係---21
2.2.4 本體論語言---23
2.2.5 本體論工具---25
2.3 專家系統---26
2.3.1 以本體論呈現知識庫的專家系統---28
2.3.2 新物件導向規則庫管理系統---30
2.3.3 模糊專家系統---31
2.3.4 以本體論為基礎之模糊推論(OFI)系統---32
2.4 認知圖相關概念---34
2.4.1 認知圖---34
2.4.2 模糊認知圖---35
2.4.3 模糊規則認知圖---35
第三章 整合OFI與模糊規則認知圖---42
3.1 多重因素類型推論---42
3.2 單一OFI流程與多重OFI流程---45
3.3 多重OFI流程規劃者前置作業---47
3.4 多重OFI流程規劃者概念---50
第四章 OFI知識表達---62
4.1 本體論建模方式---62
4.2 整合本體論模型---67
4.3 資料本體論設計---68
4.3.1 事實概念---68
4.3.2 模糊概念---77
4.3.3 規則概念---88
4.4 功能本體論設計---96
4.5 流程本體論設計---102
4.6 系統本體論特性---107
4.6.1 領域樣版---107
4.6.2 支援更多概念描述---108
4.6.3 領域知識整合---109
第五章 OFI系統架構與運作---112
5.1 OFI系統開發程序---112
5.2 OFI系統架構---115
5.2.1 Protégé-OWL API---117
5.2.2 OFI代理人---118
5.2.3 多重OFI流程規劃者---118
5.2.4 流程專家---118
5.2.5 功能物件---120
5.2.6 資料物件---122
5.3 系統運作流程---124
5.4 可組建系統物件特性---131
5.4.1 資料物件與通用資料物件比較---131
5.4.2 功能物件與彈性功能物件比較---132
5.5 本章總結---134
第六章 OFI系統實做與展現---136
6.1 實做環境介紹---136
6.2 系統開發與建置---137
6.2.1 整合本體論模型建構---137
6.2.2 可組建系統物件實做 ---140
6.2.3 使用者介面---141
6.3 系統情境展現---143
6.3.1 兩因素類型-單一路徑---146
6.3.2 三因素類型-單一路徑---149
6.3.3 三因素類型-多路徑---153
6.3.4 因素類型數目對時間影響---157
6.3.5 單一類型因素數目對時間影響---160
第七章 研究結論與未來方向---162
7.1 結論---162
7.2 未來研究方向---163
參考文獻---164
中文部分:.
李家祺,1988,「人工智慧與專家系統,松崗電腦圖書資料股份有限公司出版。
曾憲雄,2002,「專家系統導論工具應用」,文魁資訊股份有限公司出版。
葉怡成與郭耀煌,1993,「專家系統方法應用與實作」,全欣資訊圖書股份有限公司出版。
張蓓琪,2000,「EDI應用對流通業之影響因素分析─模糊認知圖之應用」,台灣區網際網路研討會論文集,pp. 542-549
張紹勳,1993,「人工智慧與專家系統」,松崗電腦圖書資料股份有限公司出版。
潘紫菁,2004,「應用本體論強化軟體技術之知識管理」,國立成功大學工程科學研究所碩士論文。
葉文權,2005,「應用本體論建構財務報表分析專家系統」,國立高雄第一科技大學資訊管理系碩士班碩士論文。
蘇嶸學,2006,「以本體為基礎的內容感知系統應用於電子型錄管理」,中原大學資訊管理學系碩士學位論文。
劉宇祖,2008,「設計並建構一個以知識本體論為基之模糊推論系統-以半導體製程為例」,元智大學工業工程與管理研究所碩士論文。
陳姵儒,2008,「以模糊認知圖探討市場新進者之競爭策略模擬」,元智大學工業工程與管理研究所碩士論文。

英文部分:
Axelrod R., 1976, “Structure of Decision: the Cognitive Maps of Political Elites”, Princeton, NJ: Princeton University Press.
Aly S., and Vrana I., 2006, “Toward efficient modeling of fuzzy expert systems: a survey,” Agric. Econ. - Czech, Vol. 52, pp.456-460.
Berners-Lee T., Hendler J. and Lassila O., 2001, “The Semantic Web”,Scientific America.
Brachman R.J. and Levesque H.J., 2004, “Knowledge Representation and Reasoning”, Elsevier.
Carvallio J.P. and Tomé J.A.B., 1999, “Rule Based Fuzzy Cognitive Maps and Fuzzy Cognitive Maps -A Comparative Study”, in Proceedings of the 18th International Conference of the North American Fuzzy Information Processing Society, NAFIPS99, New York.
Chandrasekaran B., Josephson J. R. and Benjamins V. R., 1999, “What are ontologies, andwhy do we need them”, IEEE Intelligent Systems, Vol. 14, No. 1, pp.20-26.
Domingue, J., Stutt, A., Martins, M., Tan, J., Petursson, H., and Motta, E., 2003, “Supporting Online Shopping through a Combination of Ontologies and Interface Metaphors”, International Journal of Human-Computer Studies, Vol. 59, No. 5, pp. 699-723
Feigenbaum E. A., 1977, “The art of artificial intelligence: Themes and case studies of knowledge engineering”, In Proceedings Fifth International Joint Conference on Artificial Intelligence, Los Altos, CA: Morgan Kaufmann, pp.1014-1029.
Feiqenbaum E. A. and McCorduck P., 1983, “The Fifth Generation: Artificial Intelligence and Japan''s Computer Challenge to the World”, Addison Wesley Publishing Company.
Fikes R. and Kehler T., 1985, “The Role of Frame-Based Representation in Reasoning”, CACM, pp.904-920.
Fensel, D., 2003, “Ontologies: A Silver Bullet for Knowledge Management and Electronic Commerce (2nd ed.)”, New York, USA: Springer-Verlag Inc
Friedman-Hill E., 2003, “Jess in Action: Java Rule-Based Systems”, O''Reilly Media, Incorporated.
Gruber T. R., 1993, “A translation approach to portable ontology specifications.”, Knowledge Acquisition, Vol. 5, No. 2, pp.199-220.
Hayes-Roth F., 1985, “Rule-based system”, Communications of the ACM, Vol. 28, No. 9, pp. 921-932.
Horrocks, I., Patel-Schneider, P.F. and van Harmelen, F., 2003, From SHIQ and RDF to OWL: the making of a web ontology language. Web Semantics: Sci., Serv. Agent World Wide Web1, 7-26.
Horrocks, I., Patel-Schneider P. F., and F. van Harmelen, 2003, "From SHIQ and RDF to OWL: the making of a Web Ontology Language," Web Semantics: Science, Services and Agents on the World Wide Web, Vol.1, No.1, pp.7-26.
Horrocks I., Patel-Schneider P. F., Boley H., Tabet S., Grosof B. and Dean M, 2004, “SWRL:A Semantic Web Rule Language Combining OWL and RuleML”, W3C Member Submission 21 May ,
Klyne G. and Carroll J. J., 2003, “Resource Description Framework (RDF): Concepts and Abstract Syntax”,
http://www.w3.org/TR/2003/WD-rdf-concepts-20030123/#section-Concepts
Kosko B., 1986, “Fuzzy congnitive maps”, International Journal of Man-Machine Studies, Vol.24, pp.65-75.
Kim K. H., Park J. K., Hwang K.J. and Kim S.H., 1995, “Implementation of hybrid short-term load forecasting system using artificial neural networks and fuzzy expert systems,” IEEE Trans. on Power Systems, Vol. 10, pp. 1534-1539
Lee S. and O’Keefe R. M., 1996, “The Effect of Knowledge Representation Schemes on Maintainability of Knowledge-Based Systems”, UIEEE Transactions on Knowledge and Data EngineeringU, Vol. 8, No. 1, pp.173-178.
Lee K.S. and Kim S.H., 1999, “Fault Diagnostic System Based on Fuzzy Time Cognitive Map”, ICASE, KOREA, Vol.1, No.1.
Lassila, O. and Swick, R. R., 1999, Resource Description Framework (RDF): Model and Syntax Specification. Recommendation, World Wide Web Consortium. See http://www.w3.org/TR/REC-rdf-syntax/.
Lin Y. T., Tseng S. S. and Tsai C. F., 2003, “Design and implementation of new object-oriented rule base management system”, Expert Systems with Applications, Vol. 25, No. 3, pp.369-385
Lin C.M., He Y., Tang B.Y. and Liu X.H., 2006, “Application research in stock market forecast with fuzzy cognitive maps”, Computer Applications, Vol.26, No.1
Minsky M., 1975, “A framework for representing knowledge”, In P.H. Winston (ed.), The Psychology of Computer Vision, pp.211-277.
Miller E., 2003, “Weaving Meaning: Overview of The Semantic web,” W3C Semantic Web Activity Lead.
Metamodel.com, 2003, “What are the differences between a vocabulary, a taxonomy, a thesaurus, an ontology, and a meta-model?”;
http://www.metamodel.com/article.php?story=20030115211223271.
Michael U. and Michael, G.. (2004) “Ontologies and Semantics for Seamless Connectivity”, ACM SIGMOD Record, Vol. 33, No. 4, pp.58-64
Noy N. F., Sintek M., Decker S., Crubezy M., Fergerson R. W. and Musen M. A., “Creating Semantic Web contents with Protege-2000”, 2001, IEEE Intelligent Systems, Vol.16, No.2, pp.60–71.
Noy N. F., and McGuinness D. L., 2002, “Ontology Development 101: A Guide to Creating Your First Ontology”.
Pan J., DeSouza G. N., and Kak A. C., 1998, “FuzzyShell: A Large-Scale Expert System Shell using Fuzzy Logic for Uncertainty Reasoning”, IEEE Trans. on Fuzzy Systems, pp. 563-581.
Pulido J. R. G., Ruiz M. A. G., Herrera R., Cabello E., Legrand S. and Elliman D, 2006,“Ontology languages for the semantic web: A never completely updated review”, Knowledge-Based Systems, Vol. 19, pp. 489-497.
Quillian M. R., 1967. “Word Concepts: A Theory and Simulation of Some Basic Semantic Capabilities”, Behavioral Science 12, pp.410-430.
Özyurt B. and Kandel A., 1996, “A hybrid hierarchical neural network—fuzzy expert system approach to chemical process fault diagnosis,” Fuzzy Sets and Systems, vol. 83, No. 1, pp.11-25
Scott Cost R., Finin T. and Joshi A., 2002, “ITtalks: A Case Study in the Semantic Web and DAML+OIL,” IEEE Intelligent Systems, pp.40-47.
Stylios C.D., Georgopoulos V.C., Malandraki G.A. and Chouliara S., 2008, “Fuzzy cognitive map architectures for medical decision support systems”, Applied Soft Computing, Vol.8, No.3, pp.1243-1251
The Math Work, 1995, “Fuzzy Logic Toolbox for use with MATLAB –User’s Guide” The Math Works, Massachusetts, US,
Uschold M. and Gruninger M., 1996, “Ontologies: Principles Methods and Applications”, The Knowledge Engineering Review, Vol. 11, No. 2, pp.93-136.
Weiss S. M. and Kulikowski C. A., 1984, “A practical guide to designing expert systems”, Rowman & Littlefield.
Waterman D. A., 1986, A Guide to Expert Systems, Addison-Wesley Publishing Company.
Zopounidis C., Doumpos M., and Matsatsinis N. F., 1997, “Knowledge Acquisition and Representation for Expert Systems in the Field of Financial Analysis”, UExpert Systems With ApplicationsU, Vol. 12, No. 2, pp.247-262.
http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊