跳到主要內容

臺灣博碩士論文加值系統

(3.236.124.56) 您好!臺灣時間:2021/07/28 10:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳郁夫
研究生(外文):Yu-Fu Wu
論文名稱:光電元件設計於光通訊網路系統之應用
論文名稱(外文):THE APPLICATIONS OF OPTO-ELECTRIC DEVICE DESIGN IN OPTICAL COMMUNICATION NETWORK SYSTEM
指導教授:祁甡祁甡引用關係
指導教授(外文):Shen Chi
學位類別:碩士
校院名稱:元智大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:56
中文關鍵詞:光通訊摻鉺光纖放大器費比珀羅雷射
外文關鍵詞:optical communicationEDFAFP-LD
相關次數:
  • 被引用被引用:0
  • 點閱點閱:124
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要共分三個部分。第一部分是利用無外部注入式的多模態Fabry-Perot雷射,提出一個波長轉換器架構。此波長轉換器能將2.5 Gb/s的輸入訊號做波長轉換,且位元錯誤率為10-9處得到的功率代價是3.5 dB。
第二部分則是利用光學注入式的Fabry-Perot雷射,來提出一個可調式之雙波長光纖雷射架構。此雙波長光纖雷射的波長可調範圍有39.49 nm,並且其模間距也可以在1.32 nm到39.49 nm的範圍中變動。
第三部分是在室溫下利用Fabry-Perot標準具和摻鉺光放大器,來搭配出一個多波長摻鉺光纖環型雷射。此多波長摻鉺光纖環型雷射利用了Fabry-Perot標準具的空腔長度加以搭配適當的光纖腔長度,來產生多波長的雷射輸出。當滿足輸出條件時,可得到三個在C頻帶的雷射工作波段,而每個雷射工作波段中的模間距為0.34nm。
In the first part of this thesis, using multi-mode Fabry-Perot laser without external-injection for wavelength conversion is demonstrated. The input wavelength can be converted at 2.5 Gb/s by the converter and the power penalty of 3.5 dB is observed at the bit error rate (BER) of 10-9.
In the second part, tunable dual-wavelength fiber laser using optical-injection Fabry-Perot laser is demonstrated. The dual-wavelength tuning range is 39.49 nm. And the mode spacing of the dual-wavelength can be tuned from 1.32 to 39.49 nm.
In the third part, multiwavelength erbium-doped fiber ring laser employing Fabry-Perot etalon inside cavity operating in room-temperature is demonstrated. The proposed ring laser using a Fabry-Perot etalon inside a linear cavity and employing the accurate fiber cavity length to satisfy the least common multiple number for generating multiwavelength in C-band at room temperature. When the proposed laser satisfies the output conditions, the lasing wavelength bands located at 1541.02, 1551.32 and 1562.03 nm, respectively, are observed. And the wavelength separation in each band is 0.34 nm.
書名頁………i
論文口試委員審定書………ii
授權書………iii
中文摘要………iv
英文摘要………v
誌 謝………vi
表目錄………x
圖目錄………xi
第一章 緒論………1
1.1 前言………1
1.2 光通訊網路系統簡介………2
1.2.1 光通訊的起源 ………2
1.2.2 光通訊的發展歷程………3
1.2.3 光通訊的優點 ………4
1.2.4 光通訊系統架構………6
1.3 常見並應用於光通訊系統之光電元件………7
1.3.1 Fabry-Perot與分佈反饋式(DFB)雷射二極體………8
1.3.2 摻鉺光纖放大器………9
1.4 論文架構………9
第二章 Fabry-Perot雷射二極體原理………12
2.1 前言………12
2.2 基本原理介紹………12
2.3 Fabry-Perot雷射二極體速率方程式………16
第三章 使用無外部注入的多模態Fabry-Perot雷射來做波長轉
換………19
3.1 實驗簡介………19
3.2 實驗架構與操作原理………20
3.3 實驗結果與分析 ………22
3.4 結論………26
第四章 使用Optical-Injection Fabry-Perot的可調式雙波長光
纖雷射………27
4.1 實驗簡介………27
4.2 實驗架構和操作原理………28
4.3實驗結果與分析………31
4.4 結論………35
第五章 室溫下使用Fabry-Perot標准具的多波長摻鉺光纖環型雷
射………36
5.1 實驗簡介………36
5.2 實驗架構與操作原理………37
5.3 實驗結果與分析 ………41
5.4 結論………46
第六章 結論………48
參考文獻………50
著 作……56
[1]董守薇,「我國光通訊元件產業競爭策略之研究」,國立交通大學,碩士論文,民國91年。
[2]原榮編著,光纖通訊系統-原理與應用,鄔文杰等編修,新文京出版有限公司,台北,西元2004年。
[3]J. Stone and C.A. Burrus, “Focusing effects in interferometric analysis of graded-index optical fibers,” Appl. Opt., Vol. 14, pp. 151-155. 1973.
[4]施富元,「可應用於WDM網路的光纖雷射之研究」,元智大學,碩士論文,民國97年。
[5]Nishimoto, H., Kuwahara, H., Motegi, M., “Injection-locked 1.5 µm InGaAsP/InP lasers capable of 450 Mbit/s transmission over 106 km,” Electron. Lett., Vol. 19, pp. 509-510. 1983.
[6]Toba, H., Kobayashi, Y., Yanagimoto, K., Nagai, H., Nakahara, M., “Injection-locking technique applied to a 170 km transmission experiment at 445.8 Mbit/s,” Electron. Lett., Vol. 20, pp. 370-371. 1984.
[7]Kobayashi, S., Yamada, J., Machida, S., Kimura, T., “Single-mode operation of 500 Mbit/s modulated AlGaAs semiconductor laser by injection locking,” Electron. Lett., Vol. 16, pp. 746-748. 1980.
[8]Malyon, D.J., McDonna, A. P. “102 km unrepeatered monomode fibre system experiment at 140 Mbit/s with an injection locked 1.52 µm laser transmitter,” Electron. Lett., Vol. 18, pp.445-447. 1982.
[9]Ito, M. Ito, T., Kimura, T.,”Dynamic properties of semiconductor lasers,” J. Appl. Phys, Vol.50pp. 6168-6174. 1979.
[10]Ito, M., Ito, T., Kimura, T., “Dynamic properties of semiconductor lasers,” J. Appl. Phys., Vol. 50, pp. 6168-6174. 1979.
[11]Otsuka, K., Tarucha, S., “Theoretical studies on injection locking and injection-induced modulation of laser diodes,” IEEE J. Quantum Electronics, Vol. 17, pp. 1515-1521. 1981.
[12]Ito, M., Ito, T., Kimura, T.”Dynamic properties of semiconductor lasers,” J. Appl. Phys, Vol.50pp. 6168-6174. 1979.
[13]Otsuka, K., Tarucha, S., “Theoretical studies on injection locking and injection-induced modulation of laser diodes,” IEEE J. Quantum Electronics, Vol. 17, pp. 1515-1521. 1981.
[14]Petermann, K., “Theoretical analysis of spectral modulation behaviour of semiconductor injection lasers,” Opt.& Quuntum Electron., Vol. 10, pp. 233-242. 1978.
[15]Adams, M. J., Osinski, M., “Longitudinal mode competition in semiconductor lasers - Rate equations revisited,” IEE Proc. Pt.I-Solid State & Electron Dev., Vol. 129, pp. 271-274.1982.
[16]宋洪義,「以Fabry-Perot雷射二極體作為快速的可調波長雷射」,國立交通大學,碩士論文,民國91年。
[17]Wauters, N., and Demester, P., ”Wavelength requirements and survivability in WDM cross-connected networks”, in Proc ECOC, pp.589-592. 1994.
[18]O’Mahony, M. J.,”The potential of multiwavelength transmission”, in Proc ECOC, pp. 907-913. 1994.
[19]Elmirghani, J. M. H., and Mouftah, H. T.,”All-optical wavelength conversion: Technologies and applications in DWDM networks”, IEEE Commun. Mag., Vol. 38, pp. 86-92. 2000.
[20]Durhuus, T., Mikkelsen, B., Joergensen, C., Danielsen, S. L., and Stubkjaer, K. E.,”All-optical wavelength conversion by semiconductor optical amplifiers”, J. Lightwave Technol., Vol.14, pp. 942-954. 1996.
[21]Yoo, H., Jeong, Y. D., Won, Y. H., Kang, M., and Lee, H. J.,” All-optical wavelength conversion using absorption modulation of an injection-locked Fabry-Perot laser diode”, IEEE Photon. Technol. Lett., Vol.16, pp. 536-538. 2004
[22]Cho, M. J., Cho, J. S., Jeong, Y. D., Lee, J. Y., and Won, Y. H.,” Wavelength converter with no need for an external probe beam using a single-mode Fabry-Perot laser diode”, in COIN-ACOFT, pp. 24-27. 2007.
[23]H. Li, H. Ding and K. T. Chan, “Erbium-doped fiber lasers for dual wavelength operation,” Electron. Lett., vol. 33, pp. 52-53, 1997.
[24]J. Chow, G. Town, B. Eggleton, M. Ibsen, K. Sugden and I. Bennion, “Multiwavelength generation in an erbium-doped fiber laser using in-fiber comb filters,” IEEE Photon. Technol. Lett., vol. 8, pp. 601-62, 1996.
[25]G. Das and J. W. Y. Lit, “L-band multiwavelength fiber laser using an elliptical fiber,” IEEE Photon. Technol. Lett., vol. 14, pp. 606-608, 2002.
[26]L. Talaverano, S. Abad, S. Jarabo and M. Lopez-Amo, “Multiwavelength fiber laser sources with Bragg-grating sensor multiplexing capability,” J. Lightwave Technol., vol. 19, pp. 553-558, 2001.
[27]H. Okamura and K. Iwatsuki, “Simultaneous oscillation of wavelength-tunable, singlemode lasers using an Er-doped fibre amplifier”, Electron. Lett., vol. 28, pp. 461-463, 1992.
[28]S. V. Chernikov, J. R. Taylor and R. Kashyap, “Coupled-cavity erbium fibre lasers incorporating fibre grating reflectors”, Opt. Lett., vol. 23, pp. 2023-2025, 1993.
[29]S. V. Chernikov, R. Kashyap, P. F. Mckee, and J. R. Taylor, “Dual frequency all fibre grating laser source”, Electron. Lett., vol. 29, pp. 1089-1090, 1993.
[30]Y. J. Kim and D. Y. Kim, “Electrically Tunable dual-wavelength switching in a mutually injection-locked erbium-doped fiber ring laser and distributed-feedback laser diode,” IEEE Photon. Technol. Lett., vol. 17, pp. 762-764, 2005.
[31]S. Yang, Z. Li, S. Yuan, X. Dong, G. Kai and Q. Zhao, “Tunable dual-wavelength actively mode-locked fiber laser with an F-P semiconductor modulator,” IEEE Photon. Technol. Lett., vol. 14, pp. 1494-1496, 2002.
[32]S. Li, K. T. Chan, Y. Liu, L. Zhang, and I. Bennion, “Multiwavelength picosecond pulses generated form a self-seeded Fabry-Perot laser diode with a fiber external cavity using fiber Bragg gratings,” IEEE Photon. Technol. Lett., vol. 10, pp. 1712-1714, 1998.
[33]M. Schell, D. Huhse, W. Utz, J. Kaessner, D. Bimberg, and I. S. Taraov, “Jitter and dynamics of self-seeded Fabry-Perot laser diodes,” IEEE J. Select. Topics Quantum Electron., vol. 1, pp. 528-534, 1995.
[34]D. Zhao, Y. Lai, X. Shu, W. Zhang, L. Zhang, and I. Bennion, “Noise suppression in a harmonically mode-locked fibre ring laser,” Proc. ECOC, vol. 3, pp. 1-2, 08-12 Sept. 2002.
[35]P. C. Peng, H.. Y. Tseng, and S. Chi, “A tunable dual-wavelength erbium-doped fiber ring laser using a self-seeded Fabry–Pérot laser diode,” IEEE Photon. Technol. Lett., vol. 15, pp. 661-663, 2003.
[36]N. Park and P. F. Wysocki, “24-line multi-wavelength operation of erbium- doped fiber-ring laser,” IEEE Photon. Technol. Lett. 8, 1459-1461. 1996.
[37]S. Yamashita and K. Hotate, “Multiwavelength erbium-doped fiber laser using intracavity etalon and cooled by liquid nitrogen,” Electron. Lett. 32, 1298-1299. 1996.
[38]D. H. Zhao, K. T. Chan, Y. Liu, L. Zhang, and I. Bennion, “Wavelength-switched optical pulse generation in a fiber ring laser with a Fabry-Perot semiconductor modulator and a sampled fiber Bragg grating,” IEEE Photon. Technol. Lett. 13, 191-193. 2001.
[39]Y. W. Lee and B. Lee, “Wavelength-switchable erbium-doped fiber ring laser using spectral polarization-dependent loss element,” IEEE Photon. Technol. Lett. 15, 795-797. 2003.
[40]Q. Mao and J. W. Y. Lit, “Switchable multiwavelength erbium-doped fiber laser with cascaded fiber grating cavities,” IEEE Photon. Technol. Lett. 14, 612-614. 2002.
[41]J. Hernandez-Cordero, V. A. Kozlov, A. L. G. Carter, and T. F. Morse, “Fiber laser polarization tuning using a Bragg grating in a Hi-Bi fiber,” IEEE Photon. Technol. Lett. 10, 941-943. 1998.
[42]C.L. Zhao et al., “Switchable multiwavelength erbium-doped fiber lasers by using cascaded fiber Bragg gratings written in high birefringence fiber,” Opt. Commun. 230, 313-317. 2004.
[43]C. H. Yeh, F. Y. Shih, C. T. Chen and S. Chi, “Triple-wavelength erbium fiber laser based on compound ring scheme,” Opt. Express 15, 17980-17984. 2007.
[44]G. Das and J. W. Y. Lit, “Wavelength switching of a fiber laser with a Sagnac loop reflector,” IEEE Photon. Technol. Lett. 16, 60-62. 2004.
[45]F. Ahmed, N. Kishi, and T. Miki, “Multiwavelength erbium-doped fiber Fabry-Perot laser and its uniform spectral lines power operation,” IEEE Photon. Technol. Lett. 17, 753-755, 2005.
[46]M. Stryjak, A. Budnicki, P. Kaczmarek, K. M. Abramski, “Discretely tunable and multiwavelength erbium doped fibre lasers with Fabry-Perot etalon”, International Students and Young Scientists Workshop on Photonics and Microsystems, pp. 74-77. 2007.
[47]R. Slavik and S. Larochelle, “Frequency shift in a fiber laser resonator”, Opt. Lett. 27, 28-30. 2002.
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top