跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/03 16:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:歐里
研究生(外文):Abhijit Krishna Adhikari
論文名稱:金屬有機架構物儲氫材料之合成及鑑定
論文名稱(外文):Synthesis and Characterization of Metal Organic Frameworks for Hydrogen Storage
指導教授:林錕松
指導教授(外文):Kuen-Song Lin
學位類別:碩士
校院名稱:元智大學
系所名稱:化學工程與材料科學學系
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:193
中文關鍵詞:金屬有機架構物氫氣儲存多孔洞性物質MIL-47MIL-100MIL-101MIL-102
外文關鍵詞:Metal-organic FrameworkHydrogen StoragePorous materialMIL-47MIL-100MIL-101MIL-102.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:418
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
氫是一種乾淨的能量來源,並且不會產生任何的污染。對於氫的使用上,儲存氫氣是相當重要的課題。近年來,微孔有機金屬之架構(MOFs),共價
組成擁有高孔隙度組成並由強金屬-氧-碳鍵結合在一起,且擁有相當大的表面積、熱穩定度和高儲氫程度特性。更深一層來說,氫氣吸附之能力與微孔
結晶材料的表面積有密切的關係。另外,能源的產生,會釋放大量CO2,進而改變天候狀況,為此,CO2 的捕獲和儲存即變的相當重要。然而MOFs 顯示對CO2 也會有好的吸附能力。好的吸附能力,主要取決於MOFs表面積和MOFs 中吸附的分子與金屬簇的交互反應。因此,本論文之主要研究目的為製備新的MOFs 方法及儲氫能力測試,以利作為後續儲氫的優質材料。MOFs 的結構特性並進一步由XRD、SEM、TEM、 BET、 TGA、 ESCA、 EPR 和 XANES/EXAFS 等技術作測試。
在實驗中,利用不同的金屬結合不同的化合物在不同的溶劑中合成。由FE-SEM可知不同粒徑大小的MOFs,MIL-47、 MIL-100、 MIL-101、MIL-102 和MOF-177,尺寸分別為2~15、 1~3、 1~5、10~15 及 2~5 μm。從先前製備之MOFs 包含了很多不純物,將會導致較低的孔隙度,為了改善表面積及孔隙度,將使用高溫煅燒方法處理。MOFs 比起其他材料在275~400℃擁有很好的熱穩定性。使用XANES/EXAFS spectroscopy 可測試出MOFs 精細結構及配位關係。XANES spectra 顯示出釩離子在MIL-47 中之價數為V(III),鉻的價數在MIL-100、MIL-101 和 MIL-102 中為Cr(III)。EXAFS 的數據顯示出MIL-47 有第一個V−O 鍵結在1.8467 和 1.9761 Å,MIL-100、MIL-101 和MIL-102 有Cr−O 鍵結在2.1949、 2.1934 和 2.1956 Å。
Hydrogen is a clean power source, it provides energy without producing any pollutions. For the utilization of hydrogen, hydrogen storage technology is quite important. Recently, microporous metal-organic frameworks (MOFs), the crystalline compounds, so called inorganic-organic covalent compound has shown highly porous frameworks held together by strong metal–oxygen–carbon bonds and with exceptionally large surface area, thermal stability, and high capacity for hydrogen storage. Furthermore, the hydrogen uptake is correlated with the specific surface area for crystalline microporous materials. On the other hand, initiated by climate change concerns and the need to reduce CO2 (greenhouse gas) emissions by the power industries. CO2 capture and storage is very important issue due to environment safety. Recently, MOFs showed their good adsorption capacity for CO2 also. The adsorption capacity greatly depends on the surface area, the interactions between adsorbed molecule and the metal clusters of the MOFs. Therefore, the main objective of the present study is to develop new synthetic routes for MOFs as hydrogen storage materials. The fine structural characterization of MOFs has been performed by XRD, FE-SEM, TEM, BET, TGA, ESCA, EPR and XANES/EXAFS technique.
Experimentally, MOFs were synthesized with different metal clusters combined with different organic linkers into different solvents. The particle size of these MOFs named MIL-47, MIL-100, MIL-101, MIL-102 (MIL stands for Material of the Lavoisier Institute) and MOF-177 were 2~15, 1~3, 1~5, 10~15 and 2~5 μm, respectively revealed by FE-SEM micrographs. Since as-synthesized MOFs contain many impurities that may cause low porosity, to improve the specific surface area and porosity the samples were calcined at high temperature. The MOFs were thermally well stable around 275~400oC than other organic compounds. XANES/EXAFS spectroscopy was performed to identify the fine structures of MOFs. The XANES spectra indicated that the valency of Vanadium ion in MIL-47 was VIII, and the valency of chromium was CrIII in MIL-100, MIL-101 and MIL-102. The EXAFS data also revealed that MIL-47 had first shell of V−O bonding with 1.8467 and 1.9761 Å and MIL-100, MIL-101 and MIL-102 had Cr−O first shell with 2.1949, 2.1934 and 2.1956 Å respectively.
Abstract ………………………………………………………………I
摘要……………………………………………………………………III
Acknowledgement ………………………………………………………V
Contents ……………………………………………………………VII
List of figures ……………………………………………………XI
List of tables ……………………………………………………XVII
Chapter 1 Introduction ………………………………………………1
1.1 Purpose of the present study …………………………………5
1.2 The outline of the thesis ……………………………………5
Chapter 2 Literature Review…………………………………………7
2.1 Hydrogen ……………………………………………………………7
2.1.1 Properties of Hydrogen ………………………………………8
2.2 Hydrogen storage …………………………………………………9
2.2.1 Compressed hydrogen gas storage …………………………10
2.2.2 Liquid hydrogen storage ……………………………………10
2.2.3 Metal hydride hydrogen storage …………………………11
2.2.4 Porous materials based hydrogen storage ………………14
2.2.4.1 Carbon materials …………………………………………14
2.2.4.2 Zeolites………………………………………………………14
2.2.4.3 Metal organic frameworks (MOFs) ………………………15
Chapter 3 Experimental Methods …………………………………33
3.1 Reagents used to synthesis MOFs ……………………………33
3.1.1 Metal and Metal salts ………………………………………33
3.1.2 Organic ligands ………………………………………………34
3.1.3 Solvent and other reagents…………………………………35
3.2 Experimental Equipments ………………………………………36
3.3 Synthesis of Metal Organic Frameworks ……………………37
3.3.1 Synthesis of MIL-47(Cl) ……………………………………37
3.3.2 Synthesis of MIL-47(M) ……………………………………38
3.3.3 Synthesis of MIL-100 ………………………………………39
3.3.4 Synthesis of MIL-101 ………………………………………40
3.3.5 Synthesis of MIL-102 ………………………………………42
3.3.6 Synthesis of 1,3,5-Tri(4'',4'',4''-acetylphenyl)benzene …………………………………………………………………………43
3.3.7 Synthesis of 4,4’,4”-benzene-1,3,5-triyl-tribenzoic acid (H3BTB) ……………………………………………………………………………45
3.3.8 Synthesis of MOF 177 ………………………………………46
3.4 Characterization Techniques …………………………………47
3.4.1 X-Ray Powder Diffraction (XRD) …………………………47
3.4.2 Field Emission Scanning Electron Microscopy (FE-SEM)……………………………………………………………………………49
3.4.3 Transmission Electron Microscope (TEM)…………………52
3.4.4 TGA/DTA …………………………………………………………55
3.4.5 BET ………………………………………………………………56
3.4.6 Fourier Transform Infrared Spectroscopy (FTIR) ……62
3.4.7 X-ray Absorption Near Edge Structure (XANES)/ Extended X-Ray Absorption Fine Structure (EXAFS) …………64
3.4.8 X-ray Photoelectron Spectroscopy (XPS) ………………66
3.4.9 Electron Paramagnetic Resonance …………………………69
Chapter 4 Results and Discussion ………………………………71
4.1 MIL-47 (Cl) ………………………………………………………72
4.1.1 Morphology and crystal structure of MIL-47 (Cl) ……72
4.1.2 Thermal properties of MIL-47 (Cl) ………………………78
4.1.3 Infrared spectroscopy analysis of MIL-47 (Cl) ………79
4.1.4 X-Ray Photo-Electron Spectroscopy analysis of MIL-47 (Cl) ……………………………………………………………………81
4.1.5 XANES analysis of MIL-47 (Cl) ……………………………84
4.1.6 EXAFS analysis of MIL-47(Cl) ……………………………87
4.2 MIL-47 (M) ………………………………………………………90
4.2.1 Morphology and Crystal structure of MIL-47 (M) ……90
4.2.2 Thermal properties of MIL-47 (M) ………………………94
4.2.3 Infrared spectroscopy analysis of MIL-47 (M) ………95
4.2.4 X-Ray Photo-Electron Spectroscopy analysis of MIL-47 (M) ………………………………………………………………………95
4.2.5 XANES analysis of MIL-47 (M) ……………………………99
4.2.6 EXAFS analysis of MIL-47 (M) ……………………………102
4.3 MIL-100 …………………………………………………………105
4.3.1 Morphology and crystal structure of MIL-100 ………105
4.3.2 Thermal properties of MIL-100 …………………………110
4.3.3 Infra-Red spectrum analysis of MIL-100 ………………111
4.3.4 X-Ray photoelectron spectroscopy analysis of MIL-100………………………………………………………………………113
4.3.5 EPR spectrum analysis of MIL-100………………………115
4.3.6 XANES analysis of MIL-100 ………………………………116
4.4.7 EXAFS analysis of MIL-100 ………………………………119
4.4.8 N2 adsorption of MIL-100 …………………………………121
4.4 MIL-101 …………………………………………………………124
4.4.1 Morphology and Crystal structure of MIL-101…………124
4.4.2 Thermal properties of MIL-101 …………………………129
4.4.3 Infra-Red spectroscopy analysis of MIL-101 …………130
4.4.4 X-Ray Photo-Electron Spectroscopy analysis of MIL-101 …………………………………………………………………………132
4.4.5 EPR spectrum analysis of MIL-101 ………………………134
4.4.6 XANES analysis of MIL-101 ………………………………135
4.4.7 EXAFS analysis of MIL-101 ………………………………138
4.5 MIL-102 …………………………………………………………142
4.5.1 Morphology and crystal structure of MIL-102 ………142
4.5.2 Thermal properties of MIL-102 …………………………145
4.5.3 Infrared spectroscopy analysis of MIL-102 …………145
4.5.4 X-Ray Photo-Electron Spectroscopy analysis of MIL-102 …………………………………………………………………………148
4.5.5 EPR spectrum analysis of MIL-102 ……………………148
4.5.6 XANES analysis of MIL-102 ………………………… …151
4.5.7 EXAFS analysis of MIL-102 ………………………………154
4.6 MOF 177 …………………………………………………………158
4.6.1 Morphologies of MOF-177 …………………………………158
4.6.2 Analysis of Infrared Spectrum of MOF-177 ……………159
Chapter 5 Conclusions and Future Works ………………………163
5.1 Conclusions ……………………………………………………163
5.2 Future Works ……………………………………………………165
References ……………………………………………………………167
Appendix ………………………………………………………………185
1.Colella W.G., Jacobson M.Z., and Golden D.M., Switching to a U.S. hydrogen fuel cell vehicle fleet: The resultant change in emissions, energy use, and greenhouse gases, J. Power Sources, 150, 150−181 (2005).
2.Granovskii M., Dincer I., and Rosen M.A., Life cycle assessment of hydrogen fuel cell and gasoline vehicles, Int. J. Hydrogen Energ., 31(3), 337−352 (2006).
3.Thomas C.E., James B.D., Lomax Jr F.D., and Kuhn Jr I.F., Fuel options for the fuel cell vehicle: hydrogen, methanol or gasoline?, Int. J. Hydrogen Energ., 25(6), 551−567 (2000).
4.Rohland B., Nitsch J., and Wendt H., Hydrogen and fuel cells — the clean energy system, J. Power Sources, 37(1-2), 271−277 (1992).
5.Janssen L.J.J., Hydrogen fuel cells for cars and buses, J. Appl. Electrochem., 37, 1383−1387 (2007).
6.Abanades S., and Flamant G., High-temperature solar chemical reactors for hydrogen production from natural gas cracking, Chem. Eng. Commun., 195(9), 1159−1175 (2008).
7.Paulauskas I.E., Katz J.E., Jellison Jr. G.E., Lewis N.S., and Boatner L.A., Photoelectrochemical studies of semiconducting photoanodes for hydrogen production via water dissociation, Thin Solid Films, 516(22), 8175−8178 (2008).
8.Mantz R.J., and De Battista H., Hydrogen production from idle generation capacity of wind turbines, Int. J. Hydrogen Energ., 33, 4291−4300 (2008).
9.Saxena R.C., Seal D., Kumar S., and Goyal H.B., Thermo-chemical routes for hydrogen rich gas from biomass: A review, Renew. Sust. Energ. Rev., 12(7), 1909−1927 (2008).
10.Hirscher M., and Panella B., Nanostructures with high surface area for hydrogen storage, J. Alloy. Compd., 404–406(Spec. Iss.), 399−401 (2005).
11.Sun D., Ma S., Ke Y., Collins D.J., and Zhou H.–C., An Interweaving MOF with High Hydrogen Uptake, J. Am. Chem. Soc., 128(12), 3896−3897 (2006).
12.Mulfort K.L., and Hupp J.T., Chemical Reduction of Metal-Organic Framework Materials as a Method to Enhance Gas Uptake and Binding, J. Am. Chem. Soc., 129(31), 9604−9605 (2007).
13.Chen B., Ockwig N.W., Millward A.R., Contreras D.S., and Yaghi O.M., High H2 Adsorption in a Microporous Metal–Organic Framework with Open Metal Sites, Angew. Chem. Int. Ed., 44(30), 4745−4749 (2005).
14.Loiseau T., Serre C., Huguenard C., Fink G., Taulelle F., Henry M., Bataille T., and Férey G., A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration, Chem. Eur. J., 10(6), 1373−1382 (2004).
15.Yoon J.H., Choi S.B., Oh Y.J., Seo M.J., Jhon Y.H., Lee T.–B., Kim D., Choi S.H., and Kim J., A porous mixed-valent iron MOF exhibiting the acs net: Synthesis, characterization and sorption behavior of Fe3O(F4BDC)3(H2O)3.(DMF)3.5, Catal. Today, 120(3-4 Spec. Iss.), 324–329 (2007).
16.Yang Q. and Zhong C., Understanding hydrogen adsorption in metal-organic frameworks with open metal sites: A computational study, J. Phys. Chem. B., 110(2), 655−658 (2006).
17.Jae Y.C., Kim J., Sung H.J., Kim H.-K., Chang J.-S., and Chae, H.K., Microwave synthesis of a porous metal-organic framework, zinc terephthalate MOF-5, Bull. Korean Chem. Soc., 27(10), 1523−1524 (2006).
18.Huang L., Wang H., Chen J., Wang Z., Sun J., Zhao D., and Yan Y., Synthesis, morphology control, and properties of porous metal-organic coordination polymers, Micropor. Mesopor. Mat., 58(2), 105−114 (2003).
19.Yaghi O.M. and Li, H., Hydrothermal synthesis of a metal-Organic framework containing large rectangular channels, J. Am. Chem. Soc., 117(41), 10401−10402 (1995).
20.Duren T., Sarkisov L., Yaghi O.M., and Snurr R.Q., Design of new materials for methane storage, Langmuir, 20(7), 2683−2689 (2004).
21.Dincâ M., Yu A.F., and Long J.R., Microporous Metal-Organic Frameworks Incorporating 1,4-Benzeneditetrazolate: Syntheses, Structures, and Hydrogen Storage Properties, J. Am. Chem. Soc., 128 (27), 8904−8913 (2006).
22.Eddaoudi M., Li H., and Yaghi O.M., Highly porous and stable metal-organic frameworks: Structure design and sorption properties, J. Am. Chem. Soc., 122(7), 1391−1397 (2000).
23.Rosi N.L., Eckert J., Eddaoudi M., Vodak D.T., Kim J., O´Keeffe M., and Yaghi O.M., Hydrogen storage in microporous metal-organic frameworks, Science, 300(5622), 1127−1129 (2003).
24.Kaye S.S., Dailly A., Yaghi O.M., and Long J.R., Impact of Preparation and Handling on the Hydrogen Storage Properties of Zn4O(1,4-benzenedicarboxylate)3 (MOF-5), J. Am. Chem. Soc., 129(46), 14176−14177 (2007).
25.Yaghi O.M., O''Keeffe M., Ockwig N.W., Chae H.K., Eddaoudi M., and Kim J., Reticular synthesis and the design of new materials, Nature, 423(6941), 705−714 (2003).
26.Sheng Y.–W., Wang Y., Okamur T.–A., Sun W.–Y., and Ueyama N., Synthesis, crystal structure and nonlinear optical property of cadmium(II) and copper(II) complexes with novel chiral ligand, Inorg. Chem. Commun., 10(4), 432–436 (2007).
27.Schlichte K., Kratzke T., and Kaskel S., Improved synthesis, thermal stability and catalytic properties of the metal-organic framework compound Cu3(BTC)2, Micropor. Mesopor. Mat., 73(1-2), 81−88 (2004).
28.Dagur P., Chopra D., Prakash A.S., Guru Row T.N., and Hegde M.S., Synthesis, characterization and structure of [Ni(H2O)6]2(Cr2O7)2(hmta)4.2H2O (hmta = hexamethylenetetramine): a novel metal organic–inorganic hybrid, J. Cryst. Growth, 275(1−2), e2043–e2047 (2005).
29.Chui S.S. –Y., Lo S.M.–F., Charmant J.P.H., Orpen A.G., and Williams I.D., A Chemically Functionalizable Nanoporous Material [Cu3(TMA)2(H2O)3]n, Science, 283(5405), 1148−1150 (1999).
30.Gould S.L., Tranchemontagne D., Yaghi O.M., and Garcia-Garibay M.A., Amphidynamic Character of Crystalline MOF-5: Rotational Dynamics of Terephthalate Phenylenes in a Free-Volume, Sterically Unhindered Environment, J. Am. Chem. Soc., 130(11), 3246−3247 (2008).
31.Braun M.E., Steffek C.D., Kim J., Rasmussen P.G. and Yaghi O.M., 1,4-Benzenedicarboxylate derivatives as links in the design of paddle-wheel units and metal–organic frameworks, Chem. Commun., 24, 2532–2533 (2001).
32.Sudik A.C., Côté A.P. , Wong-Foy A.G., O''Keeffe M., and Yaghi O.M., A Metal–Organic Framework with a Hierarchical System of Pores and Tetrahedral Building Blocks, Angew. Chem. Int. Ed., 45(16), 2528 – 2533 (2006).
33.Chen B., Liang C., Yang J., Contreras D.S., Clancy Y.L., Lobkovsky E.B., Yaghi O.M., and Dai S., A Microporous Metal–Organic Framework for Gas-Chromatographic Separation of Alkanes, Angew. Chem. Int. Ed., 45(9), 1390 –1393 (2006).
34.Kim J., Chen B., Reineke T.M., Li H., Eddaoudi M., Moler D.B., O''Keeffe M., and Yaghi O.M., Assembly of Metal-Organic Frameworks from Large Organic and Inorganic Secondary Building Units: New Examples and Simplifying Principles for Complex Structures, J. Am. Chem. Soc., 123(34), 8239−8247 (2001).
35.Eddaoudi M., Kim J., O''Keeffe M., and Yaghi O.M, Cu2[o-Br-C6H3(CO2)2]2(H2O)2.(DMF)8(H2O)2: A Framework Deliberately, Designed To Have the NbO Structure Type, J. Am. Chem. Soc., 124(3), 376−377 (2002).
36.Hafizovic J., Bjørgen M., Olsbye U., Dietzel P.D.C., Bordiga S., Prestipino C., Lamberti C., and Lillerud K.P., The Inconsistency in Adsorption Properties and Powder XRD Data of MOF-5 Is Rationalized by Framework Interpenetration and the Presence of Organic and Inorganic Species in the Nanocavities, J. Am. Chem. Soc., 129(12), 3612−3620 (2007).
37.Ockwig N.W., Delgado-Friedrichs O., O''Keeffe M., and Yaghi O.M., Reticular chemistry: Occurrence and taxonomy of nets and grammar for the design of frameworks, Acc. Chem. Res., 38(3), 176−182 (2005).
38.Mueller U., Schubert M., Teich F., Puetter H., Schierle-Arndt K. and Pastré J., Metal–organic frameworks—prospective industrial applications, J. Mater. Chem., 16, 626−636 (2006).
39.David J.C and Hong Z.-C., Hydrogen storage in metal–organic frameworks J. Mater. Chem., 17, 3154−3160 (2007).
40.Wang, Z., and Cohen, S.M., Post synthetic Covalent Modification of a Neutral Metal−Organic Framework, J. Am. Chem. Soc., 129(41), 12368–12369 (2007).
41.Kaye, S.S., and Long, J.R. Matrix Isolation Chemistry in a Porous Metal−Organic Framework: Photochemical Substitutions of N2 and H2 in Zn4O[(η6-1,4-Benzenedicarboxylate)Cr(CO)3]3, J. Am. Chem. Soc., 130, 806–807 (2008).
42.Kitagawa S., Kitaura R., and Noro S.–I., Functional Porous Coordination Polymers, Angew. Chem. Int. Ed., 43(18), 2334–2375 (2004).
43.Chae H.K., Siberio-Prez D.Y., Kim J., Go Y., Eddaoudi M., Matzger A. J., O''Keeffe M. and Yaghi O.M., A route to high surface area, porosity and inclusion of large molecules in crystals, Nature, 427(6974), 523−527 (2004).
44.Li H.L., Davis C.E., Groy T.L., Kelley D.G., and Yaghi O.M., Coordinatively Unsaturated Metal Centers in the Extended Porous Framework of Zn3(BDC)3•6CH3OH (BDC = 1,4-Benzenedicarboxylate), J. Am. Chem. Soc., 120(9), 2186−2187 (1998).
45.Eddaoudi M., Kim J., Rosi N., Vodak D., Wachter J., O''Keeffe M., and Yaghi O.M., Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage, Science, 295(5554), 469−472 (2002).
46.Batten S.R., coordination polymers, Curr. Opin. Solid- State Mat. Sci., 5, 107–114 (2001).
47.Férey G., Microporous solids: From organically templated inorganic skeletons to hybrid frameworks...Ecumenism in chemistry, Chem. Mater., 13(10), 3084−3098 (2001).
48.Li H., Eddaoudi M., Groy T. L., and Yaghi O.M., Establishing Microporosity in Open Metal-Organic Frameworks: Gas Sorption Isotherms for Zn(BDC) (BDC = 1,4-Benzenedicarboxylate), J. Am. Chem. Soc., 120(33), 8571−8572 (1998).
49.LiH., Eddaoudi M., O''Keeffe M., and Yaghi O.M., Design and synthesis of an exceptionally stable and highly porous metal- organic framework, Nature, 402(6759), 276−279 (1999).
50.Chen B., Eddaoudi M., Hyde S.T., O''Keeffe M., and Yaghi O.M., Interwoven metal-organic framework on a periodic minimal surface with extra-large pores, Science, 291(5506), 1021−1023 (2001).
51.Vishnyakov A., Ravikovitch P.I., Neimark A.V., Bulow M., and Wang Q.M., Nanopore structure and sorption properties of Cu-BTC metal-organic framework, Nano Lett., 3(6), 713−718 (2003).
52.Fletcher A.J., Thomas K.M., and Rosseinsky M.J., Flexibility in metal-organic framework materials: Impact on sorption properties, J. Solid State Chem., 178(8 Spec. Iss.), 2491–2510 (2005).
53.Hausdorf S., Baitalow F., Seidel J., and Mertens F.O.R.L., Gaseous Species as Reaction Tracers in the Solvothermal Synthesis of the Zinc Oxide Terephthalate MOF-5, J. Phys. Chem. A, 111(20), 4259−4266 (2007).
54.Eddaoudi M., Kim J., Vodak D., Sudik A., Wachter J., O''Keeffe M., and Yaghi O.M., Geometric requirements and examples of important structures in the assembly of square building blocks, PNAS, 99(8) 4900–4904 (2002).
55.Rosi N.L., Eddaoudi M., Kim J., O''Keeffe M., and Yaghi O.M., Infinite Secondary Building Units and Forbidden Catenation in Metal-Organic Frameworks, Angew. Chem. Int. Ed., 41(2), 284−287 (2002).
56.Ma S., Wang X.–S., Manis E.S., Collier C.D., and Zhou H.–C., Metal-Organic Framework Based on a Trinickel Secondary Building Unit Exhibiting Gas-Sorption Hysteresis, Inorg. Chem., 46(9), 3432−3434 (2007).
57.Sudik A.C., Côté A.P., and Yaghi O.M., Metal-Organic Frameworks Based on Trigonal Prismatic Building Blocks and the New “acs” Topology, Inorg. Chem., 44(9), 2998−3000 (2005).
58.Vodak D.T., Braun M.E., Kim J., Eddaoudi M., and Yaghi O.M., Metal–organic frameworks constructed from pentagonal antiprismatic and cuboctahedral secondary building units, Chem. Commun., 24, 2534–2535 (2001).
59.Stallmach F., Gröger S., Künzel V., Kärger J., Yaghi O.M., Hesse M., and Müller U., NMR studies on the diffusion of hydrocarbons on the metal-organic framework material MOF-5, Angew. Chem. Int. Edit., 45(13), 2123−2126 (2005).
60.De Rosa S., Giordano G., Granato T., Katovic A., Siciliano A., and Tripicchio F., Chemical pretreatment of olive oil mill wastewater using a metal-organic framework catalyst, J. Agr. Food Chem., 53(21), 8306−8309 (2005).
61.Sabo M., Henschel A., Fröde H., Klemm E., and Kaskel S., Solution infiltration of palladium into MOF-5: synthesis, physisorption and catalytic properties, J. Mater. Chem., 17(336), 3827–3832 (2007).
62.Carcassi M.N. and Fineschi F., Deflagrations of H2–air and CH4–air lean mixtures in a vented multi-compartment environment, Energy, 30(8), 1439–1451 (2005).
63.National Academy of Engineering, National Academy of Sciences. The Hydrogen Economy: Opportunities, Costs, National Academies Press, p. 240. ISBN 0309091632 (2004).
64.Rogers H.C., Hydrogen Embrittlement of Metals, Science, 159(3819), 1057–1064 (1999).
65.Takeshita T., Wallace W.E. and Craig R.S., Hydrogen solubility in 1:5 compounds between yttrium or thorium and nickel or cobalt, Inorg. Chem., 13(9), 2282–2283 (1974).
66.Kirchheim R., Mutschele T. and Kieninger W., Hydrogen in amorphous and nanocrystalline metals, Mater. Sci. Eng., 99, 457–462 (1988).
67.Kirchheim R., Hydrogen solubility and diffusivity in defective and amorphous metals, Prog. Mat. Sci., 32(4), 262–325 (1988).
68.Gardiner M., and Cunningham J., etals., Compressed Hydrogen Storage for Fuel Cell Vehicles, SAE paper, 2001-01-2531, (2001).
69.Ijaz M., Hydrogen Solutions for Future FCVs, 17th International Electric Vehicle Symposium, Montreal, Canada, October 2000.
70.Richards M.E., Liss W.E., etals, Development and Validation Testing of Hydrogen Fast-Fill Fueling Alogrithms, 15th World Hydrogen Energy Conference, Yokohama, Japan, June 2004.
71.Herrmann M.M. and Meusinger, J., Hydrogen Storage Systems for Mobile Applications, General Motors, September 4, 2003.
72.Arnold G., Advanced Hydrogen Storage Technologies, General Motors Hydrogen Storage and Refueling, Global Alternative Propulsion Center.
73.California Hydrogen Fueling Station Guidelines, Report to the California Energy Commission by TIAX LLC, Technical Report TR-03-163a, November 2003.
74.Anton, D.L., Mosher, D.A., and Read, C., A Review of On-Board Hydrogen Storage Alternatives for Fuel Cell Powered Automotive Applications, paper presented at the NHA 2004, Los Angeles, California, April 2004.
75.Zuttel A., Rentsch S., Fischer P., Wenger P., Sudan P., Mauron P. and Emmenegger C., Hydrogen storage properties of LiBH4, J. Alloy. Compd., 356–357, 515-520 (2003).
76.Vajo J.J., Skeith S.L. and Mertens F., Reversible Storage of Hydrogen in Destabilized LiBH4, J. Phys. Chem. B, 109, 3719−3722 (2005).
77.Bogdanovic, B. and Schwickardi M., Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials, J. Alloy. Compd., 253−254, 1−9 (1997).
78.Czujko T., Varin R.A., Wronski Z., Zaranski Z. and Durejko T., Synthesis and hydrogen desorption properties of nanocomposite magnesium hydride with sodium borohydride (MgH2 + NaBH4), J. Alloy. Compd., 427(1−2), 291−299 (2007).
79.Sarner S.F., Propellant Chemistry, 1st ed., Reinhold Publishing, NY (1966).
80.Tsivadze A. Yu., Dorokhov A.V., Masanov A.Yu., Nikitin E.V. and Votinova N.A., Complexes of sodium and lithium borohydrides with macrocyclic polyethers, Russ. J. Coord. Chem., 18, 560−565 (1992).
81.Miwa K., Aoki M., Noritake T., Ohba N., Nakamori Y., Towata S.-i., Zuttel A. and Orimo S.-i., Thermodynamical stability of calcium borohydride Ca(BH4)2, Phys. Rev. B, 74, 155122−155126 (2006).
82.Jeon E., and Cho Y., Mechanochemical synthesis and thermal decomposition of zinc borohydride, J. Alloy. Compd., 422, 273−275 (2006).
83.Brokaw R.S. and Pease R.N., The Kinetics of the Thermal Decomposition of Aluminum Borohydride, J. Am. Chem. Soc., 74, 1590−1591 (1952).
84.Nakamori Y., Miwa K., Ninomiya A., Li H., Ohba N., Towata S.-i., Zuttel A., and Orimo S.-i., Correlation between thermodynamical stabilities of metal borohydrides and cation electronegativites: First-principles calculations and experiments, Phys. Rev. B, 74, 045126−045134 (2006).
85.Savage G., Carbon-Carbon Composites, Chapman & Hall, 1993.
86.Schüth F., Sing K. S. W., and Weitkamp J., Handbook of Porous Solids, Vol.2, Wiley-VCH, Weinheim, 2002.
87.Hoskins B.F. and Robson, R., Infinite polymeric frameworks consisting of three dimensionally linked rod-like segments, J. Am. Chem. Soc ,111, 5962−5964 (1989).
88.Eddaoudi M., Moler D.B., Li H., Chen B., Reineke T.M., M. O’Keeffe, and O.M. Yaghi, Modular Chemistry: Secondary Building Units as a Basis for the Design of Highly Porous and Robust Metal−Organic Carboxylate Frameworks, Acc. Chem. Res., 34, 319−330 (2001).
89.Rowsell J.L.C. and Yaghi O.M., Strategies for Hydrogen Storage in Metal-Organic Frameworks Angew. Chem. Int. Ed., 44, 4670–4679 (2005).
90.Wong-Foy A.G., Matzger A.J. and Yaghi O.M., Exceptional H2 Saturation Uptake in Microporous Metal−Organic Frameworks, J. Am. Chem. Soc., 128(11), 3494–3495 (2006).
91.Schüth F., Sing K.S W. and Weitkamp J., Handbook of Porous Solids, Vol.2, Wiley-VCH, Weinheim, p134 (2002)
92.Müller U., Schubert M., Teich F., Pütter H., Schierle-Arndt K., and Pastré J., Metal–organic frameworks—prospective industrial applications, J. Mater. Chem., 16, 626−636 (2006).
93.Müller U., Pütter H., Hesse M. and Wessel H., German Patent 10355087 (2005).
94.Ross D.K., Hydrogen storage: The major technological barrier to the development of hydrogen fuel cell cars, Vacuum, 80(10), 1084−1089 (2006).
95.Bouza A., Read C.J., Satyapal S., and Milliken J., 2004 Annual DOE Hydrogen Program Review, Hydrogen Storage, Office of Hydrogen, Fuel Cells, and Infrastructure Technologies, 2004.
96.Rood J.A., Noll B.C. and Henderson K.W., Synthesis, Structural Characterization, Gas Sorption and Guest-Exchange Studies of the Lightweight, Porous Metal−Organic Framework α-[Mg3(O2CH)6], Inorg. Chem., 55(14), 5521−5528 (2006).
97.Dincă M. and Long J.R., Strong H2 Binding and Selective Gas Adsorption within the Microporous Coordination Solid Mg3(O2C-C10H6-CO2)3, J. Am. Chem. Soc., 127(26), 9376−9377 (2005.
98.Rowsell J.L.C. and Yaghi O.M., Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal-organic frameworks, J. Am. Chem. Soc., 128(4), 1304−1315 (2006).
99.Perles J., Iglesias M., Martín-Luengo M.-Á., Monge M.A., Ruiz-Valero C., and Snejko N, Metal-organic scandium framework: Useful material for hydrogen storage and catalysis, Chem. Mater., 17(23), 5837−5842 (2005).
100.Férey G., Latroche M., Serre C., Millange F., Loiseau T., and Percheron-Guégan A., Hydrogen adsorption in the nanoporous metal-benzenedicarboxylate M(OH)(O2C-C6H4-CO2) (M = Al3+, Cr3+), MIL-53, Chem. Commun., 9(24), 2976−2977 (2003).
101.Latroche M., Surblé S, Serre C., Mellot-Draznieks C., Llewellyn P.L., Lee J.-H., Chang J. –S., Jhung S.H., and Férey G., Hydrogen Storage in the Giant-Pore Metal–Organic Frameworks MIL-100 and MIL-101, Angew. Chem. Int. Ed., 45(48), 8227–8231 (2006).
102.Rowsell J.L.C., Millward A.R., Park K.S., and Yaghi O.M., Hydrogen sorption in functionalized metal-organic frameworks, J. Am. Chem. Soc.,126(18), 5666−5667 (2004).
103.Dailly A., Vajo J.J. and Ahn C.C., Saturation of Hydrogen Sorption in Zn Benzenedicarboxylate and Zn Naphthalenedicarboxylate, J. Phys. Chem. B, 110(3), 1099−1101 (2006).
104.Senkovska I. and Kaskel S., Solvent-Induced Pore-Size Adjustment in the Metal-Organic Framework [Mg3(ndc)3(dmf)4] (ndc = naphthalenedicarboxylate), Eur. J. Inorg. Chem., 22, 4564−4569 (2006).
105.Moon H.R., Kobayashi N. and Suh M.P., Porous Metal−Organic Framework with Coordinatively Unsaturated MnII Sites: Sorption Properties for Various Gases, Inorg. Chem., 45, 8672−8676 (2006).
106.Kesanli B., Cui Y., Smith M.R., Bittner E.W., Bockrath B.C. and Lin W., Highly Interpenetrated Metal-Organic Frameworks for Hydrogen Storage, Angew. Chem., Int. Ed., 44, 72−75 (2005).
107.Jia J., Lin X., Blake A.J., Champness N.R., Hubberstey P., Shao L., Walker G., Wilson C. and Schröder M., Triggered Ligand Release Coupled to Framework Rearrangement: Generating Crystalline Porous Coordination Materials, Inorg. Chem., 45(22), 8838−8840 (2006).
108.Ma S., Sun D., Wang X.-S. and Zhou H.-C., A Mesh-Adjustable Molecular Sieve for General Use in Gas Separation, Angew. Chem., Int. Ed., 46(14), 2458−2464 (2007).
109.Panella B., Hirscher M., Putter H., and Muller U., Hydrogen adsorption in metal–organic frameworks: Cu-MOFs and Zn-MOFs compared, Adv. Funct. Mater., 16(4), 520−524 (2006).
110.Loiseau T., Lecroq L., Volkringer C., Marrot J., Fe´rey G., Haouas M., Taulelle F., Bourrelly S., Llewellyn P.L. and Latroche M., MIL-96, a Porous Aluminum Trimesate 3D Structure Constructed from a Hexagonal Network of 18-Membered Rings and μ3-Oxo-Centered Trinuclear Units, J. Am. Chem. Soc., 128(31), 10223−10230 (2006).
111.Guo X., Zhu G., Li Z., Sun F., Yang Z. and Qiu S., A lanthanide metal–organic framework with high thermal stability and available Lewis-acid metal sites, Chem. Commun., 30, 3172–3174 (2006).
112.Kramer M., Schwarz U. and Kaskel S., Synthesis and properties of the metal-organic framework Mo3(BTC)2 (TUDMOF-1), J. Mater. Chem., 16(23), 2245−2248 (2006)
113.Ma S., Sun D., Ambrogio M.W., Fillinger J.A., Parkin S. and Zhou H.-C., Framework-Catenation Isomerism in Metal−Organic Frameworks and Its Impact on Hydrogen Uptake, J. Am. Chem. Soc., 129, 1858−1859 (2007).
114.Ma S. and Zhou H.-C., A Metal−Organic Framework with Entatic Metal Centers Exhibiting High Gas Adsorption Affinity, J. Am. Chem. Soc., 128(36), 11734−11735 (2006).
115.Surblé S., Millange F., Serre C., Düren T., Latroche M., Bourrelly S., Llewellyn P. L. and Fe´rey G., Synthesis of MIL-102, a Chromium Carboxylate Metal−Organic Framework, with Gas Sorption Analysis, J. Am. Chem. Soc., 128(46), 14889−14896 (2006).
116.Lin X., Jia J., Zhao X., Thomas K.M., Blake A.J., Walker G.S., Champness N.R., Hubberstey P. and Schröder M., Supramolecular Assemblies of Chiral Propargylic Alcohols, Angew. Chem. Int. Ed., 45(32), 7358−7360 (2006).
117.Dincă M., Dailly A., Liu Y., Brown C.M., Neumann D.A. and Long J.R., Hydrogen Storage in a Microporous Metal−Organic Framework with Exposed Mn2+ Coordination Sites, J. Am. Chem. Soc., 128(51), 16876−16883 (2006).
118.Navarro J.A.R., Barea E., Salas J.M., Masciocchi N., Galli S., Sironi A., Ania C.O. and Parra J.B., H2, N2, CO, and CO2 Sorption Properties of a Series of Robust Sodalite-Type Microporous Coordination Polymers, Inorg. Chem., 45(6), 2397−2399 (2006).
119.Fang Q.-R., Zhu G.-S., Xue M., Zhang Q.-L., Sun J.-Y., Guo X.-D., Qiu S.-L., Xu S.-T., Wang P., Wang D.-J. and Wei Y., Microporous Metal-Organic Framework Constructed from Heptanuclear Zinc Carboxylate Secondary Building Units, Chem.–Eur. J., 12(14), 3754−3758 (2006).
120.Park K.S., Ni Z., Cô té A.P., Choi, Huang R., Uribe-Romo F.J., Chae H.K., O’Keeffe M. and Yaghi O. M., Exceptional chemical and thermal stability of zeolitic imidazolate frameworks, PNAS, 103, 10186−10191 (2006).
121.Chen B., Ma S., Zapata F., Lobkovsky E.B. and Yang J., Hydrogen Adsorption in an Interpenetrated Dynamic Metal−Organic Framework, Inorg. Chem., 45(15), 5718−5720 (2006).
122.Lee J.Y., Pan L., Kelly S.P., Jagiello J., Emge T.J. and Li J., Achieving High Density of Adsorbed Hydrogen in Microporous Metal Organic Frameworks, Adv. Mater., 17(22), 2703−2706 (2005).
123.Chun H., Dybtsev D.N., Kim H. and Kim K., Synthesis, X-ray Crystal Structures, and Gas Sorption Properties of Pillared Square Grid Nets Based on Paddle-Wheel Motifs: Implications for Hydrogen Storage in Porous Materials, Chem.–Eur. J., 11, 3521−3529 (2005).
124.Lee E.Y. and Suh M.P., A Robust Porous Material Constructed of Linear Coordination Polymer Chains: Reversible Single-Crystal to Single-Crystal Transformations upon Dehydration and Rehydration, Angew. Chem., Int. Ed., 43(21), 2798−2801 (2004).
125.Dietzel P.D.C., Panella B., Hirscher M., Blom R. and H. Fjellvåg, Hydrogen adsorption in a nickel based coordination polymer with open metal sites in the cylindrical cavities of the desolvated framework, Chem. Commun., (9), 959−961 (2006).
126.Forster P.M., Eckert J., Heiken B.D., Parise J.B., Yoon J.W., Jhung S.H., Chang J.S. and Cheetham A.K., Adsorption of Molecular Hydrogen on Coordinatively Unsaturated Ni(II) Sites in a Nanoporous Hybrid Material, J. Am. Chem. Soc., 128(51), 16846−16850 (2006).
127.Zhao X., Xiao B., Fletcher A.J., Thomas K.M., Bradshaw D. and Rosseinsky M.J., Hysteretic Adsorption and Desorption of Hydrogen by Nanoporous Metal-Organic Frameworks, Science, 306, 1012−1015 (2004).
128.Millward A.R., and Yaghi O.M., Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature, J. Am. Chem. Soc., 127(51), 17998−17999 (2005).
129.Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquérol, J., and Siemieniewska, T., Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure Appl. Chem., 57(4), 603−619 (1985).
130.Bourrelly S., Llewellyn P.L., Serre C., Millange F., Loiseau T., and Férey G., Different adsorption behaviors of methane and carbon dioxide in the isotypic nanoporous metal terephthalates MIL-53 and MIL-47, J. Am. Chem. Soc., 127(39), 13519−1352 (2005).
131.Barthelet K., Marrot J., Riou D., and Férey G., A Breathing Hybrid Organic-Inorganic Solid with Very Large Pores and High Magnetic Characteristics, Angew. Chem. Int. Ed., 41(2), 281−284 (2002).
132.Finsy V., Verelst H., Alaerts L., Vos D.D., Jacobs P.A., Baron G.B. and Danayer J.F.M., Pore-Filling-Dependent Selectivity Effects in the Vapor-Phase Separation of Xylene Isomers on the Metal-Organic Framework MIL-47, J. Am. Chem. Soc., 130, 7110–7118 (2008).
133.Baerlocher, Ch., Meier W.M., and Olson, D.H., Atlas of Zeolite Framework, Types, 5th ed.; Elsevier: Amsterdam (2001).
134.Vimont A., Goupilc J., Lavalley J., Daturi M.,Surblé S., Serre C., Millange F., Férey G. and Audebrand A., Investigation of Acid Sites in a Zeotypic Giant Pores Chromium(III) Carboxylate, j. Am. Chem. Soc., 128, 3218−3227 (2006).
135.Férey, G., Serre, C., Mellot-Draznieks. C., Millange F., Surblé S., Dutour, J. and Margiolaki, I. A Hybrid Solid with Giant Pores Prepared by a Combination of Targeted Chemistry, Simulation, and Powder Diffraction, Angew. Chem. Int. Ed. 43, 6296–6301 (2004).
136.López F.J., Moya E., and Zaldo C., Characterization of chromium impurities in Bi4Ge3O12 single crystals, Solid State Commun., 76(10), 1169−1172 (1990).
137.Wertz J.E. and Bolton J.R., Electron Spin Resonance: Elementary Theory and Practical Applications, McGraw-Hill, New York, 1972.
138.Li W. and Feng X., EPR and optical studies of Cr-doped PbWO4 single crystals, Opt. Mater., 29, 457−461 (2007).
139.Singh V., Chakradhar R.P.S., Rao J.L. and Kim D.-K., Combustion synthesized MgAl2O4:Cr phosphors—An EPR and optical study, J. Luminscen., 129, 130−134 (2009).
140.Llewellyn P. L.,Bourrelly S., Serre C.,Vimont A.,Daturi M.,Hamon L., Weireld G.D.,Chang J.-s., Hong D.-y.,Hwang Y.K.,Jhung S.H., and Fe´rey G.,High Uptakes of CO2 and CH4 in Mesoporous MetalsOrganic Frameworks MIL-100 and MIL-101, Langmuir, 24, 7245-7250 (2008).
141.Férey G., Mellot-Draznieks C., Serre C., Millange F., Dutour J., Surblé S., and Margiolaki I., A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area, Science, 309(5743), 2040−2042 (2005).
142.Kondo A., Noguchi H., Ohnishi S., Kajiro H., Tohdoh A., Hattori Y., Xu W. -C., Tanaka H., Kanoh H., and Kaneko K., Novel Expansion/Shrinkage Modulation of 2D Layered MOF Triggered by Clathrate Formation with CO2 Molecules, Nano Letters, 6(11), 2581−2584 (2006).
143.Frost H., Duren T., and Snurr R.Q., Effects of surface area, free volume, and heat of adsorption on hydrogen uptake in metal-organic frameworks, J. Phys. Chem. B., 110(19), 9565−9570 (2006).
144.Chahine, R. and Bose, T.K., Low-pressure adsorption storage of hydrogen, Int. J. Hydrogen Energ., 19, 161−164 (1994).
145.Langmi H.W., Walton A., Al-Mamouri M.M., Johnson S.R., Book D., Speight J.D., Edwards P.P., Gameson I., Anderson P.A. and Harris I.R., Hydrogen adsorption in zeolites A, X, Y and RHO, J. Alloys Compd., 356–357, 710−715 (2003).
146.Koh K., Wong-Foy A.G. and Matzger A.J., A Crystalline Mesoporous Coordination Copolymer with High Microporosity, Angew. Chem. Int. Ed., 47(4), 677−680 (2008).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊