跳到主要內容

臺灣博碩士論文加值系統

(18.205.192.201) 您好!臺灣時間:2021/08/05 11:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:程美玲
研究生(外文):Mei-Ling Cheng
論文名稱:利用正電子湮滅時間光譜技術探討半結晶性之聚(3-羥基丁酸酯-共-3-羥基戊酸酯)薄膜的結構與自由體積特性
論文名稱(外文):Structure and Free Volume Properties of Semi-crystalline Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Membranes by Positron Annihilation Lifetime Analysis
指導教授:孫一明
學位類別:博士
校院名稱:元智大學
系所名稱:化學工程與材料科學學系
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:121
中文關鍵詞:正電子湮滅時間光譜自由體積熱膨脹結晶結構束縛之無定形區
外文關鍵詞:positron annihilation lifetimefree volumethermal expansioncrystalline structurerigid amorphous fraction
相關次數:
  • 被引用被引用:0
  • 點閱點閱:196
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要是利用正電子湮滅時間(positron annihilation lifetime, PAL)光譜技術,討論半結晶性之聚(3-羥基丁酸酯-共-3-羥基戊酸酯) (poly(3-hydroxybutyrate-co-3-hydroxyvalerate), PHBV)薄膜的自由體積特性隨環境溫度之變化,包含自由體積的大小、尺寸分布、數量,以及自由體積分率與熱膨脹行為;並藉由薄膜結晶熱歷史的控制,探討高分子結晶結構與自由體積特性之關聯。同時,本研究首次觀察到PHBV薄膜的自由體積在結晶熔融過程中有leveling-off的現象,對應PHBV高分子的FTIR光譜分析結果,推論發生此現象的起始溫度(Tk, knee temperature)為PHBV高分子物理結構產生細微變化的起始點。
研究中利用等溫與非等溫結晶程序,分別在冷結晶(cold-crystallization)與熱熔結晶(melt-crystallization)的條件下完成PHBV薄膜的製備。不同結晶程序可獲得結晶結構各異的薄膜,因而造成薄膜無定形區域的自由體積特性變化,透過PAL量測的結果及結晶結構的分析,得知材料的結晶溫度越高,導致越高的結晶度、較少的自由體積數目以及較低的自由體積分率,並呈現線性關係。針對材料自由體積大小差異,本研究提出材料結晶速率影響自由體積的熱膨脹行為之理論,就PHBV高分子而言,結晶速率越快,形成的結晶結構造成無定形區的自由體積越容易熱膨脹,因此在高溫的環境下,較快的結晶速率下結晶的高分子薄膜具有較大的自由體積尺寸。在此,引用半結晶高分子的三相模型:結晶區(crystalline fraction)、可移動之無定形區(mobile amorphous fraction, MAF)與束縛之無定形區(rigid amorphous fraction, RAF),以解釋自由體積與結構的變化,根據小角X光散射(small-angle X-ray scattering, SAXS)的結果與薄膜結晶度推論,熱熔結晶條件下成型的PHBV薄膜相對於冷結晶成型薄膜具有較厚的長週期厚度(long period, L),L為結晶晶板厚度(lamellar thickness, Lc)和無定形層厚度(thickness of amorphous layer, La)的總和,而且此一晶板排列週期厚度呈現雙峰分布,加上較少的RAF含量,導致熱融結晶成型之PHBV薄膜的擁有較廣的自由體積尺寸分布。總結而言,本研究建立一結晶結構與自由體積特性關聯的模型:自由體積大小的熱膨脹行為受到結晶動力學的影響;相對地,自由體積數量和自由體積分率是由薄膜的整體結晶度所控制。另外,經由結晶條件所決定的結晶晶板尺寸與結構則是對應至自由體積大小的分布寬廣。
Free volume properties in the amorphous region of a series of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) membranes, which were prepared by cold- and melt-crystallization processes, were investigated using positron annihilation lifetime (PAL) spectroscopy in this study. From the lifetime parameters, the temperature dependence of free volume size, amount, free volume size distribution, and fractional free volume, and the thermal expansion of free volume were discussed. Furthermore, the knee temperature was first observed in the melting process of the crystallized PHBV membranes. It indicated that there was structural transition of polymer chains during melting as the corresponding results observed with in situ FTIR measurement.
A model which assumed that amorphous phase was subdivided into mobile and rigid amorphous fractions (MAF and RAF) in the semi-crystalline polymer was considered to interpret the temperature dependence of those free volume properties. The difference of free volume properties among various PHBV membranes was created according to the crystalline structure of the polymer from different thermal history. The polymer crystallized at higher temperatures resulted in higher crystallinities, less free volume amounts and lower fractional free volumes. Based on the crystallization conditions, the effect of the crystallization rate of PHBV polymer was first proposed to explain the thermal expansion coefficients of free volume size. The faster crystallization rate is, the higher thermal expansion coefficient and the larger free volume size at higher measuring temperatures are. Morphological observation of the semi-crystalline polymer by small-angle X-ray scattering (SAXS) indicated that the cold-crystallized membranes showed a much thinner thickness of the repeating lamellar/amorphous layers and most likely higher amount of RAF, which restrained the chain motion, than the melt-crystallized membranes. Larger dispersion of the free volume size of melt-crystallized membranes was observed as a result of the bimodal distribution of the lamellar periodicity and less amount of RAF than that of the cold-crystallized membranes. In conclusion, the relationship between the crystalline structure and the free volume properties within the amorphous phase of PHBV polymer was well established. Free volume size and thermal expansion of the free volume in PHBV membranes were affected by the kinetic of crystallization; comparatively, the total amount of free volume and fractional free volume were determined by the final crystallinity. The size distribution of free volume was associated with the crystalline lamellar structure which was dominated by the crystallization conditions.
CONTENTS

ABSTRACT I
ABSTRACT (in Chinese) III
ACKNOWLEDGEMENT (in Chinese) V
CONTENTS VII
LIST OF TABLES IX
LIST OF FIGURES X
NOMENCLATURE XV
CHAPTER 1 INTRODUCTION 1
1.1 Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) 1
1.2 Crystalline structure of semi-crystalline polymers 3
1.3 Free volume concept of polymers 8
1.4 Scope and objective 16
CHAPTER 2 POSITRON ANNIHILATION SPECTROSCOPY 18
2.1 Positron and positronium 18
2.1.1 Basics of positron and positronium 18
2.1.2 Positronium chemistry 21
2.2 Positron annihilation lifetime spectroscopy 24
CHAPTER 3 EXPERIMENTAL AND DATA ANALYSIS 29
3.1 Characterization of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) 29
3.2 Membrane preparation 30
3.2.1 Non-isothermal crystallization 30
3.2.2 Isothermal crystallization 31
3.3 Thermal analysis 32
3.4 Crystalline structure analysis 33
3.5 Free volume analysis 34
3.5.1 Positron annihilation lifetime spectroscopy 34
3.5.2 Data analysis 35
CHAPTER 4 RESULTS AND DISCUSSION 42
4.1 Characteristics and temperature dependence of the structure of PHBV polymer 42
4.3 Crystalline structure of PHBV membranes 57
4.4 Characterization of free volume properties of PHBV membranes 63
4.4.1 Temperature dependence of free volume 63
4.4.2 Effect of cooling rate on free volume 74
4.4.3 Effect of crystallization temperature on free volume 87
4.5 Effect of crystalline structure on the free volume properties of PHBV membranes 99
CHAPTER 5 CONCLUSIONS 106
REFERENCES 109
VITA 119
LIST OF PUBLICATION 120
1.Verhoogt, H., B.A. Ramsay, and B.D. Favis, Polymer Blends Containing Poly(3-hydroxyalkanoate)s. Polymer, 1994. 35: 5155-5169.
2.Cox, M.K., Properties and Application of Polyhydroxyalkanoates, in Biodegradable Plastic and Polymers, Y. Doi and K. Fukuda, Editors. 1994, Amsterdam: Elsevier. p. 120.
3.Scandola, M., G. Ceccorulli, M. Pizzoli, and M. Gazzano, Study of the Crystal Phase and Crystallization Rate of Bacterial Poly(3-hydroxybutyrate-co-3- hydroxyvalerate). Macromolecules, 1992. 25: 1405-1410.
4.Miguel, O., T.A. Barbari, and J.J. Iruin, Carbon Dioxide Sorption and Diffusion in Poly(3-hydroxybutyrate) and Poly(3-hydroxybutyrate-co-3-hydroxyvalerate). J Appl Polym Sci, 1999. 71: 2391-2399.
5.Miguel, O. and J.J. Iruin, Water Transport Properties in Poly(3-hydroxybutyrate) and Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Biopolymers. J Appl Polym Sci, 1999. 73: 455-468.
6.Philip, S., T. Keshavarz, and I. Roy, Polyhydroxyalkanoates: Biodegradable Polymers with a Range of Applications. J Chem Technol Biotechnol, 2007. 82: 233-247.
7.First-Ever Biodegradable PHBV Plastic Homegoods Products. bioplastics Magazine, 2008. 3: 5.
8.Defosse, M., Greening of an Industry: PHBV Gets Food-contact Approval. Modern Plastics Worldwide, August 08, 2008.
9.Feng, L., M. Yoshie, N. Asakawa, and Y. Inoue, Comonomer-Unit Compositions, Physical Properties and Biodegradability of Bacterial Copolyhydroxyalkanoates. Macromol Biosci, 2004. 4: 186-198.
10.Sperling, L.H., Introduction to Physical Polymer Science. 2nd ed. 1992, New York: Wiley.
11.Keller, A., A Note on Single Crystals in Polymers: Evidence for a Folded Chain Configuration. Philos Mag, 1957. 2: 1171-1175.
12.Khoury, F. and E. Passaglia, The Morphology of Crystalline Synthetic Polymers, in Treatise on Solid State Chemistry, N.B. Hannay, Editor. 1976, New York: Plenum Press. p. 335.
13.Fujiwara, Y., The Superstructure of Melt-crystallized Polyethylene. I. Screwlike Orientation of Unit Cell in Polyethylene Spherulites with Periodic Extinction Rings. J Appl Polym Sci, 1960. 4: 10-15.
14.Rybnikar, F. and P.H. Geil, Lamellar Structure of Isothermally Crystallized Poly-4-methyl pentenet-1. J Macromol Sci Phys B, 1973. 7: 1-17.
15.Gedde, U.W., Polymer Physics. 1995, London: Chapman & Hall. 298.
16.Doolittle, A.K., Studies in Newtonian Flow. II. The Dependence of the Viscosity of Liquids on Free-Space. J Appl Phys, 1951. 22: 1471-1478.
17.Fox, T.G. and P.J. Flory, Further Studies on the Melt Viscosity of Polyisobutylene. J Phys Chem 1951. 55: 211-234.
18.Ferry, J.D., Viscoelastic Properties of Polymer. 3rd ed. 1980, New York: Wiley. 641.
19.Doolittle, A.K. and D.B. Doolittle, Studies in Newtonian Flow. V. Further Verification of the Free-Space Viscosity Equation. J Appl Phys, 1957. 28: 901-909.
20.Kovacs, A., Transition Vitreuse Dans Les Polymères Amorphes. Etude Phénoménologique. Adv Polym Sci, 1964. 3: 394-507.
21.Hutchinson, J.M., in The Physics of Glassy Polymer, R.N. Haward and R.J. Young, Editors. 1997, London: Chapman & Hall. p. 85.
22.Bauwens, J.C., in Failure of Plastics, W. Brostow and R.D. Corneliussen, Editors. 1986, New York: Hanser.
23.Crank, J. and G.S. Park, Diffusion in Polymers. 1968, London: Academic Press. 452.
24.Bondi, A., Physical Properties of Molecular Crystals, Liquids and Glasses. 1968, New York: Wiley.
25.Lee, W.M., Selection of Barner Materials from Molecular Structure. Polym. Eng. Sci., 1980. 20: 65-69.
26.Van Krevelen, D.W., Properties of Polymers. 1990, Amsterdam: Elsevier. 875.
27.Williams, M.L., R.F. Landel, and D.J. Ferry, The Temperature Dependence of Relaxation Mechanisms in Amorphous Polymers and Other Glass-forming Liquids. J Am Chem Soc, 1955. 77: 3701-3707.
28.Suzuki, H., J. Grebovicz, and B. Wunderlich, Glass Transition of Poly(oxymethy1ene). Br Polym J, 1985. 17: 1-3.
29.Šics, I., T.A. Ezquerra, A. Nogales, F.J. Baltá-Calleja, M. Kalniņš, and V. Tupureina, On the Relationship between Crystalline Structure and Amorphous Phase Dynamics during Isothermal Crystallization of Bacterial Poly(3- hydroxybutyrate-co-3-hydroxyvalerate) Copolymers. Biomarcomolecules, 2001. 2: 581-587.
30.Dlubek, G., A.S. Gupta, J. Pionteck, R. Häßler, R. Krause-Rehberg, H. Kaspar, and K.H. Lochhaas, Glass Transition and Free Volume in the Mobile (MAF) and Rigid (RAF) Amorphous Fractions of Semicrystalline PTFE: a Positron Lifetime and PVT Study. Polymer, 2005. 46: 6075-6089.
31.Hu, Y.S., R.Y.F. Liu, L.Q. Zhang, M. Rogunova, D.A. Schiraldi, S. Nazarenko, A. Hiltner, and E. Baer, Oxygen Transport and Free Volume in Cold-Crystallized and Melt-Crystallized Poly(ethylene naphthalate). Macromolecules, 2002. 35: 7326-7337.
32.Kilburn, D., D. Bamford, T. Lüpke, G. Dlubek, T.J. Menke, and M.A. Alam, Free Volume and Glass Transition in Ethylene/1-octene Copolymers: Positron Lifetime Studies and Dynamic Mechanical Analysis. Polymer, 2002. 43: 6973-6983.
33.Lin, J., S. Shenogin, and S. Nazarenko, Oxygen Solubility and Specific Volume of Rigid Amorphous Fraction in Semicrystalline Poly(ethylene terephthalate). Polymer, 2002. 43: 4733-4743.
34.Chen, H., M.L. Cheng, Y.C. Jean, L.J. Lee, and J. Yang, Effect of CO2 Exposure on Free Volumes in Polystyrene Studied by Positron Annihilation Spectroscopy. J Polym Sci B: Polym Phys, 2008. 46: 388-405.
35.Jean, Y.C., P.E. Malon, and D.M. Schrader, Principle and Application of Positron and Positron Chemistry. 2003, Singapore: World Scientific. 406.
36.Nakanishi, H., S.J. Wang, and Y.C. Jean, in Positron Annihilation Studies of Fluids, S.C. Sharma, Editor. 1988, Singapore: World Scientific. p. 292.
37.Yampolskii, Y. and V. Shantarovich, Positron Annihilation Lifetime Spectroscopy and Other Methods for Free Volume Evaluation in Polymers, in Materials Science of Membranes for Gas and Vapor Separation, Y. Yampolskii, I. Pinnau, and B.D. Freeman, Editors. 2006, New York: Wiley Interscience. p. 191.
38.Mogensen, O.E., Positron Annihilation in Chemistry. 1995, Berlin: Springer-Verlag. 268.
39.Machado, J., G.G. Silva, F.C. De Oliveira, R.L. Lavail, J. Rieumont, P. Licinio, and D. Windmöller, Free-Volume and Crystallinity in Low Molecular Weight Poly(ethylene oxide). J Polym Sci B: Polym Phys, 2007. 45: 2400-2409.
40.Dlubek, G., J. Stejny, T.H. Lüpke, D. Bamford, P. K., C.H. Hübner, M.A. Alam, and M.J. Hill, Free-Volume Variation in Polyethylenes of Different Crystallinities: Positron Lifetime, Density, and X-Ray Studies. J Polym Sci B: Polym Phys, 2002. 40: 65-81.
41.Nakanishi, H., Y.C. Jean, E.G. Smith, and T.C. Sandreczki, Positronium Formation at Free-volume Sites in the Amorphous Regions of Semicrystalline PEEK. J Polym Sci B: Polym Phys, 1989. 27: 1419-1424.
42.Dlubek, G., F. Redmann, and R. Krause-Rehbrg, Humidity-Induced Plasticization and Antiplasticization of Polyamide 6: A Positron Lifetime Study of the Local Free Volume. J Appl Polym Sci, 2002. 84: 244-255.
43.Dlubek, G., M. Supej, V. Bondarenko, J. Pionteck, G. Pompe, R. Krause-Rehberg, and I. Emri, Ortho-positronium Lifetime Distribution Analyzed with MELT and LT and Free Volume in Poly(e-caprolactone) during Glass Transition, Melting, and Crystallization. J Polym Sci B: Polym Phys, 2003. 41: 3077-3088.
44.Madani, M.M., R.C. Macqeen, and R.D. Granata, Positron Annihilation Lifetime Study of PTFE/Silica Composites. J Polym Sci B: Polym Phys, 1996. 34: 2767-2770.
45.Tanaka, M., K. Takebe, A. Uedono, Y. Ujihira, K. Horie, and T. Asanuma, Increase of I4 at Melting Point Found in Polyethylene and Serious Thermal Hysteresis Found in Polypropylene. Mater Sci Forum, 1992. 105-110: 1737-1740.
46.Li, H.L., Y. Ujihira, S. Shukushima, and K. Ueno, Variation of Size, Numerical Concentration and Size Distribution of Free Volume of Heat Shrink Polyethylene Prepared by Electron Irradiation Crosslinkage with Temperature Probed by Positron Annihilation Technique. Polymer, 2000. 41: 93-99.
47.Kilburn, D., D. Bamford, G. Dlubek, J. Pionteck, and M.A. Alam, The Size and Number of Local Free Volumes in Polypropylenes: A Positron Lifetime and PVT Study. J Polym Sci B: Polym Phys, 2003. 41: 3089-3093.
48.Mallon, P.E., Application to Polymers, in Principles and Application of Positron and Positron Chemistry, Y.C. Jean, P.E. Mallon, and D.M. Schrader, Editors. 2003, Singapore: World Scientific. p. 253.
49.Wang, B.G., T. Yamaguchi, and S.I. Nakao. in 4th Conference on Membrane Sciense and Technology in Taiwan (CMST). 2004. Chung-Li.
50.Duda, J.L. and P.R. Berens, Diffusion in Polymer Melts, in Devolatilization of polymers, J.A. Biesenberser, Editor. 1983, New York: Hanser. Ch. 3.
51.Dirac, P.A.M., On the annihilation of electrons and protons. Proc Camb Phil Soc, 1930. 26: 361-375.
52.Anderson, C.D., The Positive Electron. Phys Rev, 1933. 43: 491-494.
53.Pirenne, J. Ph. D. Dissertation. 1944, Paris, France: University of Paris.
54.Wheeler, J.A., Positronium. Ann N Y Acad Sci, 1946. 48: 219-238.
55.Shearer, J.W. and M. Deutsch, Phys Rev, 1949. 76: 462.
56.Rich, A., Recent Experimental Advances in Positronium Research. Rev Mod Phys, 1981. 53: 127-165.
57.Ore, A., in Naturv. Rekke. 1949, Univ. Bergen Arbok. No. 9.
58.Mogensen, O.E., Spur Reaction Model of Positronium Formation. J Chem Phys, 1974. 60: 998-1004.
59.Brandt, W., S. Berko, and W.W. Walker, Positronium Decay in Molecular Substances. Phys Rev, 1960. 120: 1289-1295.
60.Jean, Y.C., Positron Annihilation Spectroscopy for Chemical Analysis: A Novel Probe for Microstructural Analysis of Polymers. Microchem J, 1990. 42: 72-102.
61.Tao, S.J., Positronium Annihilation in Molecular Substances. J Chem Phys, 1972. 56: 5499-5510.
62.Eldrup, M., D. Lightbody, and J.N. Sherwood, The Temperature Dependence of Positron Lifetimes in Solid Pivalic Acid. Chem. Phys., 1981. 63: 51-58.
63.Madia, W.J., A.L. Nichols, and H.J. Ache, Molecular Complex Formation Between Positronium and Organic Molecules in Solutions. J Am Chem Soc, 1975. 97: 5041-5049.
64.Barham, P.J., A. Keller, E.L. Otun, and P.A. Holmes, Crystallization and Morphology of a Bacterial Thermoplastic: Poly-3-hydroxybutyrate. J Mater Sci, 1984. 19: 2781-2794.
65.Yoshie, N., M. Saito, and Y. Inoue, Structural Transition of Lamella Crystals in a Isomorphous Copolymer, Poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Macromolecules, 2001. 34: 8953-8960.
66.Kavesh, S. and J.M. Schultz, Lamellar and Interlamellar Structure in Melt-crystallized Polyethylene. I. Degree of Crystallinity, Atomic Positions, Particle Size, and Lattice Disorder of the First and Second Kinds. J Polym Sci A: Polym Chem, 1970. 8: 243-276.
67.Riso National Laboratory, PATFIT package. 1989: Denmark.
68.Gregory, R.B., Free-volume and Pore Size Distributions Determined by Numerical Laplace Inversion of Positron Annihilation Lifetime Data. J Appl Phys, 1991. 70: 4665-4678.
69.Shukla, A., M. Perer, and L. Hoffman, Analysis of Positron Lifetime Spectra using Quantified Maximum Entropy and a General Linear Filter. Nucl Instrum Method Phys Res A, 1993. 335: 310-317.
70.Kansy, J., Microcomputer Program for Analysis of Positron Annihilation Lifetime Spectra. Nucl Instrum Methods Phys Res A, 1996. 374: 235-244.
71.Cao, H., G.H. Dai, J.P. Yuan, and Y.C. Jean, Reliability of Ortho-positronium Lifetime Distribution Analysis in Polymers by using CONTIN Program. Mater Sci Forum, 1997. 255-257: 238-242.
72.Dlubek, G. and S. Elchler, Do MELT or CONTIN Programs Accurately Reveal the o-Ps Lifetime Distribution in Polymers? Analysis of Simulated Lifetime Spectra. Phys Stat Sol (a), 1998. 168: 333-350.
73.Dlubek, G. and S. Elchler, Do MELT or CONTIN Programs Accurately Reveal the o-Ps Lifetime Distribution in Polymers? Phys Stat Sol (a), 1999. 172: 303-315.
74.Wang, Y.Y., H. Nakanishi, Y.C. Jean, and T.C. Sandreczki, Positron Annihilation in Amine-cured Epoxy Polymers - Pressure Dependence. J Polym Sci B: Polym Phys, 1990. 28: 1431-1441.
75.Liu, J., Q. Deng, and Y.C. Jean, Free-volume Distributions of Polystyrene Probed by Positron Annihilation: Comparison with Free-volume Theories. Macromolecules, 1993. 26: 7149-7155.
76.Marchessault, R.H. and G. Hu, Crystallization and Material Properties of Polyhydroxyalkanoates in Biopolymers: Properties and Chemical Synthesis, Y. Doi and A. Steinbuechel, Editors. 2002, Weinheim: Wiley-VCH. p. 157.
77.Schick, C., A. Wurm, and A. Mohamed, Vitrification and Devitrification of the Rigid Amorphous Fraction of Semi-crystalline Polymers Revealed from Frequency-dependent Heat Capacity. Colloid Polym Sci, 2001. 279: 800-806.
78.Tashiro, K., S. Sasaki, N. Gose, and M. Kobayashi, Microscopically-Viewed Structural Change of Polyethylene during Isothermal Crystallization from the Melt I. Time-Resolved FT-IR Spectral Measurements. Polym J, 1998. 30(6): 485-491.
79.Xu, J., B.-H. Guo, R. Yang, Q. Wu, G.-Q. Chen, and Z.-M. Zhang, In Situ FTIR Study on Melting and Crystallization of Polyhydroxyalkanoates. Polymer, 2002. 43: 6893-6899.
80.Yoshie, N., A. Asaka, K. Yazawa, Y. Kuroda, and Y. Inoue, In Situ FTIR Microscope Study on Crystallization of Crystalline/crystalline Polymer Blends of Bacterial Copolyesters. Polymer, 2003. 44: 7405-7412.
81.Wu, Q., G. Tian, S.Q. Sun, N. I., and G.Q. Chen, Study of Microbial Polyhydroxyalkanoates using Two-dimensional Fourier-transform Infrared Correlation Spectroscopy. J Appl Polym Sci, 2001. 82: 934-940.
82.Bayari, S., The FTIR Studies of the Poly(3-hydroxybutyrate) and Poly(3-hydroxybutyrate-co-hydroxyvalerate) in New Biomedical Materials: Basic and Applied Studies, D. Chapman and P.I. Haris, Editors. 1998, Amsterdam: IOS Press. p. 58.
83.Bayari, S. and F. Severcan, FTIR Study of Biodegradable Biopolymers: P(3HB), P(3HB-co-4HB) and P(3HB-co-3HV). J Mem Struct, 2005. 744-747: 529-534.
84.Zhu, X.Y. and D.Y. Yan, In Situ FTIR Spectroscopy Study on the Melting Process of Isotactic Poly(propylene). Macromol Chem Phys, 2001. 202(7): 1109-1113.
85.Cser, F., About the Lorentz Correction Used in Interpretation of Small-Angle X-ray Scattering Data of Semicrystalline Polymers. J Appl Polym Sci, 2001. 80: 358-366.
86.Dlugosz, J., G.V. Fraser, D. Grubb, A. Keller, J.A. Odell, and L. Goggin, Study of Crystallization and Isothermal Thickening in Polyethylene using SAXD, Low Frequency Raman Spectroscopy and Electron Microscopy. Polymer, 1976. B17: 471-480.
87.Škrbić, Ž. and V. Divjaković, Temperature Influence on Changes of Parameters of the Unit Cell of Biopolymer PHB. Polymer, 1996. 37: 505-507.
88.Klug, H.P. and L.E. Alexander, X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials. 1954, New York: Wiley. 716.
89.Okamoto, K., K. Tanaka, M. Katsube, H. Kita, and Y. Ito, Free Volume Holes of Rubbery Polymers Probed by Positron Annihilation. Bull Chem Soc Jpn, 1993. 66: 61-68.
90.Bhardwaj, R., A.K. Mohanty, L.T. Drzal, F. Pourboghrat, and M. Misra, Renewable Resource-Based Green Composites from Recycled Cellulose Fiber and Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Bioplastic. Biomacromolecules, 2006. 7: 2044-2051.
91.Stevens, R., S.H. Chung, P. Horoyski, and K.R. Jeffrey, The Local Environment for Sodium Cations in Poly(propylene glycol) from NMR and Positron Annihilation Studies. J Non-Crystal Solids, 1994. 172-174: 1207-1214.
92.Lovinger, A.J., S.D. Hudson, and D.D. David, High-temperature Crystallization and Morphology of Poly(aryl ether ether ketone). Macromolecules, 1992. 25: 1752-1758.
93.Santa Cruz, C., N. Stribeck, Z.H. G., and B.C.F. J., Novel Aspects in the Structure of Poly(ethylene terephthalate) as Revealed by Means of Small Angle X-ray Scattering. Macromolecules, 1991. 24: 5980-5990.
94.Sauer, B.B. and B.S. Hsiao, Effect of the Heterogeneous Distribution of Lamellar Stacks on Amorphous Relaxations in Semicrystalline Polymers. Polymer, 1995. 36: 2553-2558.
95.Cheng, M.L., Y.M. Sun, H. Chen, and Y.C. Jean, Change of Structure and Free Volume Properties of Semi-crystalline Poly(3-hydroxybutyrate-co-3- hydroxyvalerate) during Thermal Treatments by Positron Annihilation Lifetime. Polymer, 2008. revised.
96.Abdel-Hady, E.E., H.F.M. Mohamed, and S.S. Fareed, Temperature Dependence of the Free Volume Holes in Polyhydroxybutyrate Biopolymers: A Positron Lifetime Study. Phys Stat Sol (c), 2007. 4: 3907.
97.Wilkinson, N.J., D. Archer, J.M. Clayton, S.G. Usmar, and M.A. Alam, Positron Behaviour in PHB Polymer. Mater Sci Forum, 1992. 105-110: 1819-1822.
98.Lind, J.H., P.L. Jones, and G.W. Pearsall, A Positron Annihilation Lifetime Study of Isotactic Polypropylene. J Polym Sci A: Polym Chem, 1986. 24: 3033-3047.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top