跳到主要內容

臺灣博碩士論文加值系統

(34.204.180.223) 您好!臺灣時間:2021/08/05 15:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:江知諶
研究生(外文):Zhi- Chen Jiang
論文名稱:S-PEEK電紡纖維補強質子交換複合膜製備與性能研究
論文名稱(外文):Preparation and Characterization of SulfonatedPoly(ether ether ketone) Nano-fiber Reinforced Proton Exchange Composite Membranes
指導教授:余子隆
指導教授(外文):Tzyy-Lung Yu
學位類別:碩士
校院名稱:元智大學
系所名稱:化學工程與材料科學學系
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:91
中文關鍵詞:靜電紡絲聚醚醚酮聚苯並咪唑Nafion複合膜
外文關鍵詞:electro- spinningsulfonated polyether ether ketonepolybenzimidazoleNafioncomposite membrane
相關次數:
  • 被引用被引用:2
  • 點閱點閱:292
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
論文包括兩項工作:(1)S-PEEK(sulfonated - poly (ether ether
ketone))奈米纖維補強PBI(polybenzimidazole)複合膜;(2)S-PEEK-NH2
(sulfonated , amino poly (ether ether ketone))奈米纖維補強Nafion複合膜。
(1)使用聚醚醚酮(polyether ether ketone, PEEK)將其進行磺酸化改質成S-PEEK。以DMAc(N,N-dimethyl acetamide)配製S-PEEK/DMAc溶液利用電紡絲技術製備微米~奈米纖維膜,探討不同的電紡操作參數對纖維直徑的影響。以S-PEEK奈米纖維膜為基材,以刮刀塗佈PBI/DMAc溶液製作PBI/S-PEEK fiber複合膜。將複合膜與商用電極貼合製作膜電極組(MEA)並進行高溫單電池測試。由i-V極化曲線可發現隨著溫度升高,單電池效能下降,可能是複合膜截面的孔洞影響單電池效能。
(2)S-PEEK奈米纖維膜以聯胺(hydrazine monohydrate, H2NNH2•H2O)進行胺基化改質為S-PEEK-NH2奈米纖維,以此奈米纖維補強Nafion製作S-PEEK-NH2奈米纖維補強Nafion複合膜。由SEM觀察,Nafion填滿整個S-PEEK-NH2纖維膜。以此複合膜製作MEA進行單電池測試結果OCV達0.907 V,小於Nafion-212膜材的OCV,單電池整體效能高於Nafion-212。
關鍵字:靜電紡絲、聚醚醚酮、聚苯並咪唑、Nafion、複合膜
Preparation and Characterization of Sulfonated
Poly(ether ether ketone) Nanofiber Reinforced Proton Exchange Composite Membrane
Student: Zhi- Chen Jiang Advisor:Dr. T. L. Yu
Department of Chemical Engineering and Materials Science
Yuan Ze University
Abstract
Using electrospinning technology, we prepared two kinds of nano-fiber films from sulfonated polyether ether ketone (S-PEEK)/ DMAc(N,N-dimethyl acetamide) solution, S-PEEK-NH2 fiber by hydrazine monohydrate. The nano-fiber films were used as matrices to prepare PBI/S-PEEK fiber composite membrane and Nafion/S-PEEK
-NH2 fiber composite membrane by fabricatibg PBI/DMAc solution on S-PEEK nano-fiber film and Nafion solution on S-PEEK-NH2 nano-fiber film, respectively.
From SEM micro-graphs of surfaces and cross-sections of these two composite membranes, we found PBI and Nafion resins were filled into the nano-fiber films. The single cell test showed the OCV of MEA prepared from PBI/S-PEEK fiber composite membrane had reached 0.6 V in high temperature(140℃ and 160℃) PEMFC but the maximum power density was around 50.22 mW/cm2 at 140℃. The OCV of Nafion/ S-PEEK-NH2 fiber composite membrane had reached 0.907 V which was lower than that MEA prepared from Nafion-212 membrane, but the maximum power density of Nafion/S-PEEK-NH2 fiber membrane was better than that of Nafion-212.
Keywords: electro- spinning, sulfonated polyether ether ketone, polybenzimidazole, Nafion, composite membrane.
目錄
摘要 I
目錄 I
圖目錄 V
表目錄 VIII
一、序論 1
1.1 前言 1
1.2 燃料電池簡介 2
1.2.1 燃料電池的分類與優缺點 2
1.2.2 發電原理及構造 4
1.3 質子交換膜簡介 6
1.3.1 Nafion簡介 6
1.3.2 聚苯並咪唑(polybenzimidazole,PBI)簡介 7
1.3.3 聚醚醚酮(Polyether ether ketone, PEEK)簡介 10
1.3.4 PTFE-Nafion複合膜於燃料電池上的應用 10
1.4 電紡技術簡介 11
1.4.1 奈米纖維(nanofiber)簡介 12
1.4.2 電紡絲程序 14
1.4.3 穩定的電紡絲程序 17
1.4.4 影響電紡絲纖維形態之參數 19
1.5 研究目的 28
二、實驗 29
2.1 實驗架構 29
2.2 藥品 31
2.3 儀器設備 32
2.4 磺酸化聚醚醚酮(sulfonated poly ether ether ketone)的製備 33
2.4.1 PEEK顆粒粉碎步驟 33
2.4.2 PEEK的磺酸化 33
2.4.3 S-PEEK的純化處理 33
2.4.4 PEEK和S-PEEK粉末的結構鑑定和性質分析 33
2.5 S-PEEK電紡實驗 34
2.5.1 電紡絲實驗儀器裝置:圖2.1為電紡絲實驗儀器示意圖 34
2.5.2 電紡實驗步驟 35
2.5.3 S-PEEK電紡纖維製備 36
2.6 PBI分析鑑定 37
2.6.1 霍式紅外光譜儀(FTIR)結構鑑定 37
2.6.2 固有黏度測定 37
2.7 S-PEEK纖維補強PBI複合膜製備 38
2.7.1 PBI/DMAc溶液配製 38
2.7.2 PBI/S-PEEK fiber複合膜製作 38
2.7.3 PBI與S-PEEK成分比例量測 40
2.7.4 PBI/S-PEEK fiber複合膜含酸率測試 40
2.7.5 MEA製作 41
2.8 S-PEEK纖維補強PBI複合膜材性質分析 41
2.8.1 SEM觀察表面結構型態 41
2.8.2 高溫單電池測試 41
2.9 胺基化聚醚醚酮aminated poly (ether ether ketone)的製備 44
2.9.1 PEEK顆粒粉碎步驟 44
2.9.2 PEEK的硝酸化 44
2.9.3 PEEK-NO2的處理 44
2.9.4 PEEK-NH2的製備 44
2.9.5 PEEK, PEEK-NO2和PEEK-NH2的結構鑑定和性質分析 45
2.10 S-PEEK-NH2纖維補強Nafion複合膜製備 45
2.10.1 S-PEEK-NH2電紡纖維膜製備 45
2.10.2 Nafion/S-PEEK-NH2 fiber複合膜製作 46
2.10.3 膜電極組(MEA)製備 46
2.10.4 S-PEEK-NH2纖維補強Nafion複合膜性質分析 46
三.結果與討論 49
3.1 PEEK與溶劑的相容性 49
3.2 PEEK的磺酸化 49
3.3 PEEK、S-PEEK的結構鑑定 50
3.3.1 PEEK及SPEEK的霍式紅外光譜儀(FTIR)分析 50
3.3.2 S-PEEK粉末之TGA熱重分析 52
3.3.3 S-PEEK粉末DSC 微差熱掃描分析 53
3.3.4 S-PEEK元素分析(EA)的測定 55
3.3.5 S-PEEK 離子交換當量(IEC)測定 55
3.4 S-PEEK電紡纖維結構鑑定 56
3.4.1 S-PEEK電紡纖維結構鑑定SEM 56
3.4.2 S-PEEK 電紡纖維離子交換當量(IEC)測定 63
3.5 PBI的結構鑑定 63
3.5.1 PBI的霍式紅外光譜儀(FTIR)分析 63
3.5.2 PBI固有黏度測定 65
3.6 S-PEEK纖維補強PBI複合膜性質測試 66
3.6.1 PBI/S-PEEK fiber複合膜含量測定 66
3.6.2 S-PEEK纖維補強PBI複合膜SEM結構分析 66
3.6.3高溫單電池效能測試 67
3.7 PEEK、PEEK-NO2及PEEK-NH2的結構鑑定 69
3.8 PEEK-NH2與溶劑的相容性 70
3.9 S-PEEK及S-PEEK-NH2的結構鑑定 70
3.10 S-PEEK-NH2纖維補強Nafion複合膜性質測試 72
3.10.1 S-PEEK-NH2纖維補強Nafion複合膜SEM結構分析 72
3.10.2 S-PEEK-NH2纖維補強Nafion複合膜EDS分析 73
3.10.3低溫單電池測試 75
四、結論 80
五、未來工作與建議 82
六、參考文獻 83


圖目錄
圖1.1 質子交換膜燃料電池構造示意圖 4
圖1.2 直接甲醇燃料電池構造示意圖 5
圖1.3 全氟磺酸化聚電解質(Nafion)化學結構 6
圖1.4 PBI化學結構 8
圖1.5 聚醚醚酮PEEK的結構式 10
圖1.6 纖維直徑對表面積影響之關係圗 13
圖1.7 PEDT nanofiber的直徑與導電度關係 13
圖1.8 電紡絲裝置圖 15
圖1.9 穩定的電紡絲裝置示意圖 17
圖1.10 電紡絲程序圖 17
圖1.11 高速攝影機拍攝splaying region 18
圖1.12 不同分子量的幾丁聚醣,電紡纖維結構分佈圖 22
圖1.13 不同分子量的幾丁聚醣,電紡纖維結構圖 22
圖1.14 黏度、導電度以及表面張力對纖維型態之影響 23
圖1.15 添加不同結構鹽類對PDLA 電紡纖維直徑的影響 23
圖1.16 操作電壓對PS電紡纖維型態的影響 26
圖1.17 溶液流量對Polysulfone纖維型態的影響 26
圖1.18 旋轉式收集盤之電紡絲程序示意圖 27
圖1.19 滾筒式收集器示意圖 27
圖2.1.1 實驗架構(S-PEEK電紡纖維補強PBI) 29
圖2.1.2 實驗架構(S-PEEK-NH2電紡纖維補強Nafion) 30
圖2.2 電紡裝置圖 35
圖2.3 高溫測試用單電池 42
圖2.4 單蛇流道板 42
圖2.5 高溫單電池測試系統 43
圖2.6 低溫測試用單電池 48
圖2.7 單蛇流道板 48
圖3.1 PEEK及S-PEEK 的IR光譜 51
圖3.2 PEEK & S-PEEK(98 wt% H2SO4處理PEEK) TGA分析 52
圖3.3 PEEK DSC分析 53
圖3.4 S-PEEK(98 wt% H2SO4處理PEEK) DSC分析 54
圖3.5 PEEK&S-PEEK(98 wt% H2SO4處理PEEK) DSC分析 54
圖3.6 不同濃度之S-PEEK/DMAc 溶液電紡纖維SEM圖 58
圖3.7 不同電壓之S-PEEK/DMAc 21 wt%溶液電紡纖維SEM圖 59
圖3.8 不同工作距離之S-PEEK/DMAc 21 wt%溶液電紡纖維SEM圖 60
圖3.9 不同流量之S-PEEK/DMAc 21 wt%溶液電紡纖維SEM圖 61
圖3.10 PBI 的IR光譜 64
圖3.11 PBI/S-PEEK fiber複合膜(45 ?m)SEM圖 67
圖3.12 (a) PBI/S-PEEK fiber複合膜(45 ?m)在不同操作溫度下的單電池I-V極化曲線圖 68
圖3.12 (b) PBI/S-PEEK fiber複合膜(45 ?m)在不同操作溫度下的單電池I-P極化曲線圖 68
圖3.13 PEEK、PEEK-NO2、PEEK-NH2的IR光譜 69
圖3.14 S-PEEK及S-PEEK-NH2電紡纖維的IR光譜 71
圖3.15 S-PEEK-NH2纖維膜與Nafion/S-PEEK-NH2複合膜截面與 72
表面SEM圖 72
圖3.16 Nafion/S-PEEK-NH2複合膜截面SEM與EDS元素分析圖 74
圖3.17 Nafion/S-PEEK-NH2複合膜單電池不同活化時間極化曲線圖
(a) i-V curve; (b) i-P curve 76
圖3.18 Nafion/S-PEEK-NH2複合膜不同流量之極化曲線圖 76
(a) i-V curve; (b) i-P curve 76
圖3.19 Nafion-212(50 ?m)與Nafion/S-PEEK-NH2(25 ?m)複合膜極化
曲線比較圖(a) i-V curve; (b) i-P curve 77
圖3.20 在電流分別為(a) I = 3 A;(b) I = 10 A;(c) I = 20 A
Nafion-212(50 ?m)與Nafion/ S-PEEK-NH2(25 ?m)複合膜Impedance數據曲線圖(active area = 25 cm2) 78


















表目錄
表1.1 燃料電池的分類 2
表1.2 電紡絲適用之高分子材料與溶劑參考表 16
表1.3 影響電紡程序之參數 21
表2.1 PBI之固有黏度之數值 37
表3.1 PEEK在不同溶劑中的溶解性質 49
表3.2 不同H2SO4濃度磺酸化結果 50
表3.3 PEEK及S-PEEK之IR peaks分析 51
表3.4 DSC曲線之玻璃轉移溫度整理表 55
表3.5 S-PEEK元素分析結果及磺酸化比例計算 55
表3.6 S-PEEK (powder)的IEC值 55
表3.7 操作電壓對纖維結構及直徑之影響 62
表3.8 工作距離對纖維結構及直徑之影響 62
表3.9 溶液流量對纖維結構及直徑之影響 62
表3.10 S-PEEK(fiber film)的IEC值 63
表3.11 PBI之IR peaks分析 64
表3.12 固有黏度溶液流動時間數據表 65
表3.13 複合膜厚度與成分百分比(100 cm2) 66
表3.14 PEEK、PEEK-NO2、PEEK-NH2之IR peaks分析 69
表3.15 PEEK-NH2在不同溶劑中的溶解性質 70
表3.16 S-PEEK及S-PEEK-NH2 fiber之IR peaks分析 71
表3.17 S-PEEK-NH2纖維補強Nafion複合膜成分表(100 cm2) 73
表3.18 Nafion-212與Nafion/S-PEEK-NH2 fibe複合膜效能比較表 77
表3.19 Nafion-212與Nafion/S-PEEK-NH2 fiber 複合膜在不同電流下之阻抗比較表(active area = 25 cm2) 79
1.Asensio, J.A., Borrós, S., Pedro, G.R., “Proton-conducting polymers based on benzimidazoles and sulfonated benzimidezoles” , Journal of Polymer Science: Part A: Polymer Chemistry, 40, 3703-3710 (2002).
2.Bamdad, B., Alex, R.H., Jeffrey, A.K., “Ultra-thin integral composite
membrane”, US Patent 5547551 (1996).
3.Brinker, K.C., Robinson, I.M., “Polybenzimidazoles” , US Patent, NO. 2,895,948 (1959).
4.Carbone, A., Pedicini, R., Sacc`a, A., Gatto, I., Passalacqua, E., “Composite S-PEEK membranes for medium temperature polymer electrolyte fuel cells”, Journal of Power Sources, 178, 661-666 (2008).
5.Chen, J., Maekawa, Y., Asano, M., Yoshida, M., “Double crosslinked polyetheretherketone-based polymer electrolyte membranes prepared by radiation and thermal crosslinking techniques”, Polymer, 48, 6002-6009 (2007).
6.Chen, S.L., Bocarsly, A.B., Benziger, J., “Nafion-layered sulfonated polysulfone fuel cell membranes”, Journal of Power Sources, 152, 27-33 (2005).
7.Chen, Y., Li, X.S., Song, T.Y., “Electrospinning and Crosslinking of Zein Nanofiber Mats”, Journal of Applied Polymer Science, 103, 380-385 (2007).
8.Choe, E.W. and Choe, D.D., in Polymeric Materials Encyclopedia, Vol. 7, Salamone J.C., Editor, 5619, CRC Press, Boca Raton, FL (1996).
9.Carbone, A., Pedicini, R., Portale, G., Longo, A., D’Ilario L., Passalacqua E., “Sulphonated poly(ether ether ketone) membranes for fuel cell application : Thermal and structural characterization”, Journal of Power Sources, 163, 18-26 (2006).
10.Dudgeon, C.D. , Vogl, O., “Bisorthoesters as polymer intermediates, II. A facile method for the preparation of polybenzimidazoles”, J. Polym. Sci. Polym. Chem. Ed., 16, 1831-1852 (1978).
11.El-Aufy, A., Nabet, B., Frank, K., “Carbon Nanotube Refinforced (PEDT/PAN) nanocomposites for Wearable Electronics”, Polymer Preprints, 44, 134-135 (2003).
12.Fong, H., Chun, I., Reneker, D.H., “Beaded nanofibers formed during electrospinning”, Polymer, 40, 4585-4592 (1999).
13.Formhals, A., US Patent, NO. 1, 975, 504 (1934).
14.Foster, R.T., Marvel, C.S., “Polybenzimidazoles IV. Polybenzimidazoles containing aryl ether linkages”, Journal of Polymer Science Part A: General Papers, 3, 417-421 (1965).
15.Fu, Y., Manthiram, A., Guiver, M.D., “Blend membranes based on sulfonated poly(ether ether ketone) and polysulfone bearing benzimidazole side groups for proton exchange membrane fuel cells”, Electrochemistry Communications, 8, 1386-1390 (2006).
16.Geng, X., Kwon, O., Jang, J., “Electrospinning of chitosan dissolved in concentrated acetic acid solution”, Biomaterials, 26, 5427-5432 (2005).
17.Hasiotis, C., Li, Q., Deimede, V., Kallitsis, J.K., Kontoyannis, C.G., Bjerrum, N.J., “Development and Characterization of Acid-Doped Polybenzimidazole/Sulfonated Polysulfone Blend Polymer
Electrolytes for Fuel Cells”, Journal of the
Electrochemical Society 148 (5) A513-A519 (2001)
18.Hobson, L.J., Nakano, Y., Ozu, H., and Hayase, S., “Targeting improved DMFC performance”, Journal of Power Source, 104, 79-84 (2002).
19.Hsu, C.M., Shivkumar, S., “N, N-Dimethylformamide Additions to the Solution for the Electrospinning of Poly(?-caprolactone) Nanofibers”, Macromolecular Materials and Engineering, 289, 334-340 (2004).
20.Huang, Z.M., Zhang, Y.Z., Kotaki, M., Ramakrishna, S., “A review on polymer nanofibers by electrospinning and their applications in nano- composites”, Composites Science and Technology, 63, 2223- 2253 (2003).
21.Iwakura, Y., Uno, K., Imai, Y., “Polybenylenebenzimidazoles”, Journal of Polymer Science Part A: General Papers, 2, 2605-2615 (1964-a).
22.Iwakura, Y., Uno, K., Imai, Y., “Polybenzimidazoles. II.Polyalkylenebenzimidazoles”, Makromol. Chem., 77, 33-40 (1964-b)
23.Kim, B., Park, H., Lee, S.H., “Poly(acrylic acid) nanofibers by electrospinning”, Materials Letters, 59, 829-832 (2005).
24.Koski, A., Yim, K., Shivkumar, S., “Effect of molecular weight on fibrous PVA produced by electrospinning”, Materials Letters, 58, 493-497 (2004).
25.Ko, K. F., “NANOFIBER TECHNOLOGY: Bridging the Gap between Nano and Macro World ”, (2004)
26.Lee, J.S., Choi, K.H., Ghim, H.D., Kim, S.S, Chun, D.H., Kim, H.Y., Lyoo, W.S., “Role of Molecular Weight of Atactic Poly(vinyl alcohol)(PVA) in the Structure and Properties of PVA Nanofabric Prepared by Electrospinning”, Journal of Applied Polymer Science, 93, 1638-1646 (2004).
27.Lee, K.H., Kim, H.Y., La, Y.M., Lee, D.R., Sung, N.H., “Influence of a mixing solvent with tetrahydrofuran and N,N-dimethylformamide on electrospun poly(vinyl chloride) nonwoven mats”, Journal of Polymer Science Part B: Polymer Physics, 40, 2259-2268 (2002).
28.Lee, K.H., Kim, H.Y., Bang, H.J., Jung, Y.H., Lee, S.G., “The change of bead morphology formed on electrospun polystyrene fibers”, Polymer, 44, 4029-4034 (2003-b).
29.Lee, K.H., Kim, H.Y., Khil, M.S., Ra, Y.M., Lee, D.R., “Characterization of nano-structured poly(?-caprolactone) nonwoven mats via electrospinning”, Polymer, 44, 1287-1294 (2003-a).
30.Li, L., Hsieh, Y.L., “Ultra-fine polyelectrolyte fibers from electrospinning of poly(acrylic acid)”, Polymer, 46, 5133-5139 (2005).
31.Li, Q., Hans, A.H., Niels, J.B., “Phosphoricacid doped polybenzimidazole membranes: Physiochemical characterization and fuel cell applications”, Jounal of Applied Electrochemistry, 31, 773-779 (2001).
32.Li, X.F., Hao, X.F., Na, H., “Preparation of nanosilver particles into sulfonated poly(ether ether ketone) (S-PEEK) nanostructures by electrospinning”, Materials Letters, 61, 421-426 (2007).
33.Lin, H.L., Yu, T.L., Shen, K.S., Huang, L.N., “Effect of Triton-X on the preparation of Nafion/PTFE composite membranes”, Journal of Membrane Science, 237, 1-7 (2004).
34.Lu, G.Q., Wang, C.Y., Yen, T.J., Zhang, X., “Development and characterization of a silicon-based micro direct methanol fuel cell”, Electrochimica Acta, 49, 821-828 (2004).
35.Lu, X.F., Zhao, Y.Y., Wang, C., “Fabrication of PbS nanoparticles in polymer-fiber matrices by electrospinning”, Advanced Materials, 17, 2485-2488, (2005).
36.Ma, Y.L.,Wainright, J.S. , Litt, M.H., Savinell, R.F., “Conductivity of PBI membranes for high-temperature polymer electrolyte fuel cells”, J. Electrochem. Soc., 151, A8 (2004).
37.Othman, M.H.D., Ismail, A.F., Mustafa, A., “Proton conducting composite membrane from sulfonated poly (ether ether ketone) and boron orthophosphate for direct methanol fuel cell application”, Journal of Membrane Science, 299,156-165 (2007).
38.Paturzo, L., Basile, A., Iulianelli, A., Jansen, J.C., Gatto, I., Passalacqua, E., “High temperature proton exchange membrane fuel cell using a sulfonated membrane obtained via H2SO4 treatment of PEEK-WC”, Catalysis Today, 104, 213-218 (2005).
39.Rikukawa, M., Sanui, K., “Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers”, Progress in Polymer Science, 25, 1463-1502 (2000).
40.Reneker, D.H., Chun, I., “Nanometre diameter fibres of polymer, produced by electrospinning”, Nanotechnology, 7, 216-223 (1996).
41.Reneker, D.H., Yarin, A.L., Fong, H., Koombhongse, S., “Bending instability of electrically charged liquid jets of polymer solutions in electrospinning”, Journal of Applied Physics, 87, 4531-4547 (2000).
42.Rutledge, G.C., Li, T., Fridrikh, S., Warner, S.B., Kalayci, V.E., Patra, P., “Electrostatic Spinning and properties of Ultrafine Fibers”, National Textile Center, 2000 Annual Report (M98-D01), National Textile Center. Pp. 1-10 (2001).
43.Sajitha, C.J., Mahendran, R., Mohan, D., “Studies on cellulose acetate-carboxylated polysulfone blend ultra iteration membranes”, European Polymer Journal, 38, 2507-2511 (2002).
44.Silverstein, R.M., Bassler, G.C., Morrill, T.C., Spectrometric Identification of Organic Compounds, 4th edition, Chapter 3, Wiley, New York, (1981)
45.Smitha, B., Sridhar, S., Khan, A.A., “Proton conducting composite membranes from polysulfone and heteropolyacid for fuel cell applications”, Journal of Polymer Science: Part B: Polymer Physics, 43, 1538-1547 (2005).
46.Sung, K.A., Jung, H.Y., Kim, W.K., Cho, K.Y., Park, J.K., “Influence of dispersion solvent for catalyst ink containing sulfonated poly(ether ether ketone) on cathode behaviour in a direct methanol fuel cell”, Journal of Power Sources, 169, 271-275, (2007).
47.Suresh, L.S., Bates, W. D., Frisch, H. L., Wnek, G.E., “Role of chain entanglements on fiber formation during electro- spinning of polymer solutions: good solvent, non-specific polymer- polymer interaction limit”, Polymer, 46, 3372-3384, (2005).
48.Tao, J., Satya, S., “Molecular weight dependent structural regimes during the electrospinning of PVA”, Materials Letters, 61, 11-12 (2006).
49.Taylor, Gi. Proc. P. Soc. Lond A, 280, 383 (1964).
50.Ueda, M., Sato, M., Mochizuki, A., “Poly(benzimidazole) synthesis by direct reaction of diacids and tetramine”, Macromolecules, 18, 2723 -2726 (1985).
51.Vogel, H.A. and Marvel, C.S., Journal of Polymer Science: Part A, 1, 531 (1963)
52.Vogel, H.A. and Marvel, C.S., Journal of Polymer Science: Part A, 2, 4795 (1964)
53.Vogel, H.A. and Marvel, C.S., Journal of Polymer Science: Part A, 50, 511 (1961)
54.Wainright, J.T.S., Wang, J.T., Savinell, R.F., Litt, M.H., “Acid-doped polybenzimidazoles: a new polymer electrolyte”, J. Electrochem. Soc., 142, L121 (1995).
55.Wang, J.T., Savinell, R.F., Wainright, J., Litt, M.H., Yu, H., “A H2/O2 fuel cell using acid doped polybenzimidazole as polymer electrolyte”, Electrochimica Acta , 41, 193-197 (1996-a).
56.Wang, J.T., Wainright, J.S. , Savinell, R.F., Litt, M.H., “Direct methanol fuel cell using acid-doped polybenzimidazole as polymer electrolyte”, Journal of Applied Electrochemistry, 26, 751-756 (1996-b).
57.Wang, L., Yi, B.L., Zhang, H.M., Liu, Y.H., Xing, D.M., Shao, Z.G., Cai, Y.H., “Sulfonated polyimide/PTFE reinforced membrane for PEMFCs”, Journal of Power Sources, 167, 47-52 (2007).
58.Wannatong, L., Supaphol, P., Sirivat, A., “Effects of solvents on electrospun polymeric fibers: preliminary study on polystyrene”, Polymer International, 53, 1851-1859 (2004).
59.Wu, Y., Yu, J.Y., He, J.H., Wan, Y.Q., “Controlling stability of the electrospun fiber by magnetic field”, Chaos, Solitons and Fractals, 32, 5-7, (2007).
60.Xing, B. Savadogo, O., “Hydrogen/Oxygen polymer electrolyte membrane fuel cells (PEMFCs) based on alkaline-doped polybenzimidazole (PBI)”, Electrochem. Commun., 2, 697-702 (2000-a).
61.Xing, B. Savadogo, O., “Hydrogen/Oxygen polymer electrolyte membrane fuel cells (PEMFCs) based on acid-doped polybenzimidazole (PBI)”, J. New Mater. Electrochem. Syst., 3, 345 -349 (2000-b).
62.Yuan, X., Zhang, Y., Dong, C., Sheng, J., “Morphology of ultrafine polysulfone fibers prepared by electrospinning”, Polymer Inter- national, 53, 1704-1710 (2004).
63.Yu, T.L., Lin, H.L., Shen, K.S., Huang, L.N., Jung, G.B., and Huang, J. C., “Nafion/PTFE composite membranes for fuel cell applications”, Journal of Polymer Research, 11, 217-224 (2004).
64.Zhang, Y.Z., Venugopal, J., Huang, Z.-M., Lim, C.T., Ramakrishna S., “Crosslinking of the electrospun gelatin nanofibers”, Polymer, 47, 2911-2917 (2006).
65.Zhao, S., Wu, X., Wang, L., Huang, Y., “Electrospinning of Ethyl-CyanoethylCellulose/Tetrahydrofuran Solutions”, Journal of Applied Polymer Science, 91, 242-246 (2004).
66.Zhou, H.J., Thomas, B., Green, C., Yong, L.J., “The thermal effects on electrospinning of polylactic acid melts”, Polymer, 47, 7497-7505 (2006).
67.Zhong, S., Cui, X., Cai, H., Fu, T., Zhao, C., Na, H., “Crosslinked sulfonated poly(ether ether ketone) proton exchange membranes for direct methanol fuel cell applications”, Journal of Power Sources, 164, 65-72 (2007).
68.Zong, X., Kim, K., Fang, D., Ran, S., Hsiao, B.S., Chu, B., “Structure and process relationship of electrospun bioabsorbable nanofiber membranes”, Polymer, 43, 4403-4412 (2002).
69.Zong, X., Ran, S., Fang, D., Hsiao, B.S., Chu, B., “Control of structure, morphology and property in electrospun poly(glycolide-co-lactide) non-woven membranes via post-draw treatments”, Polymer, 44, 4959-4967 (2003).
70.沈坤昇,PTFE-Nafion複合膜的製作及性能研究,碩士論文,元智大學化工系(2003)。
71.邱志豪,聚苯咪唑合成及薄膜性質,碩士論文,元智大學化工系(2004)。
72.張凱鑫,聚苯咪唑和聚醚砜電紡奈米纖維製備及性質研究,碩士論文,元智大學化工系(2005)。
73.張維凱,PBI薄膜及PBI-PTFE複合膜之製備及在燃料電池的應用,碩士論文,元智大學化工系(2005)。
74.張欽宗,s-PSU纖維補強PBI複合膜與PBI纖維補強Nafion複合膜製備與性能研究,碩士論文,元智大學化工系(2008)
75.洪崇豪,以電紡絲製備彈性奈米SBS纖維膜,碩士論文,成功大學 (2004)。
76.奈米纖維,吳大誠、杜仲良、高緖珊著,楊榮川發行,五南圖書
77.黃朝榮,元智大學化工系, “燃料電池”,上課講義,(2003)
78.衣寶廉, “燃料電池-原理與應用” ,五南圖書(2005)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊