跳到主要內容

臺灣博碩士論文加值系統

(3.236.110.106) 您好!臺灣時間:2021/07/27 20:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林麗婷
研究生(外文):Li-Ting Lin
論文名稱:利用兩階段電沉積法製備氧化鋅薄膜及其性質研究
論文名稱(外文):Preparation and Characterization of ZnO Films by Two-Step Electrodepostion
指導教授:洪逸明
學位類別:碩士
校院名稱:元智大學
系所名稱:化學工程與材料科學學系
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:107
中文關鍵詞:氧化鋅兩階段電沉積薄膜
外文關鍵詞:zinc oxidetwo-step electrodepositionfilm
相關次數:
  • 被引用被引用:0
  • 點閱點閱:165
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
本研究於氯化鋅(zinc chloride, ZnCl2)及氯化鉀(potassium chloride, KCl)水溶液中,通入一穩定流量氧氣,以兩階段恆電位電沉積(electrodeposition)的方式,於ITO(indium tin oxide)導電玻璃基材上製備氧化鋅(zinc oxide,ZnO)薄膜。於兩階段電沉積法中,先於ITO基材上沉積一層晶種層,而後再於晶種層上生長出氧化鋅。其沉積第一階段晶種層之目的為降低第二階段生長氧化鋅時所需的活化能,提高生長效率,並且藉由晶種層的分佈密度與晶種的大小分佈,進而控制氧化鋅薄膜之表面生長型態。藉由改變電沉積法的反應條件,探討晶種層沉積之反應溫度、鋅離子前驅物濃度、反應電壓與反應時間等變數,對氧化鋅晶種層之表面型態與光學性質之影響,並進而探討其對氧化鋅薄膜之成長型態、結構與性質的影響。
研究結果顯示:使用單一階段電沉積法於ITO基材上沉積氧化鋅時,所沉積之氧化鋅其表面型態無均一性且為雜亂生長,其型態包括柱狀、顆粒狀與板狀結構。而利用兩階段之電沉積反應,經由改變反應條件沉積之氧化鋅晶種層作為基材,所得之氧化鋅薄膜,皆可於基材上生長出氧化鋅棒狀結構,且由XRD分析顯示為多晶且具(002)之優選取向的薄膜。
當改變反應溫度沉積所得之晶種層,其結果顯示:反應溫度提高,可促進晶種生長,使其生成密度增加,而晶種層之表面高度全距(Rmax)與粗糙度(rms)隨反應溫度之上升而增加。將不同反應溫度沉積之晶種層為基材,所得之氧化鋅薄膜的結晶型態為棒狀結構,且氧化鋅棒與與晶種之生成密度有相同趨勢,而反應溫度提高亦有助於氧化鋅棒朝c軸方向成長。當以55 ℃之反應溫度沉積之晶種層為基材,所得之氧化鋅棒,直徑分佈主要於150 nm左右,於(002)之優選取向的織構因素(texture coefficient,TC)為2.26。
當以鋅離子濃度作為操作變因時,成核密度與鋅離子濃度的大小成正比關係,且經由第二階段成長反應後,在第一階段濃度
0.001 M的條件下所沉積之ZnO的型態最為均一化,其棒狀直徑在150 nm左右佔總數之82 %,透光率較佳,且有(002)方位之優選取向,其TC值為2.26。
當反應電壓由-0.6 V提升至-1.0 V,沉積之晶種的生成密度增加,且晶種層之Rmax與rms值下降,分別由867.3 nm下降至157.9 nm與116.3 nm下降至23.9 nm。當以較高反應電壓沉積之晶種層作為基材,所得之氧化鋅薄膜,其表面型態為由棒狀型態之氧化鋅緊密排列而成的緻密薄膜,因此其薄膜透光率與(002)方位的優選取向較佳,其TC值最高達3.22。
藉由不同之沉積時間所沉積之氧化鋅晶種層得知,隨沉積時間之增加,由於晶種將ITO上之空隙填滿,因此晶種層的Rmax與rms降低。當沉積晶種層之時間由5 min至10 min時,其rms由80.7 nm下降至25.3 nm,Rmax則由554.2 nm下降至213.9 nm,但由於晶種層厚度的增加,使薄膜透光率下降。
In this paper, the large-scale ZnO films were prepared onto ITO glass substrate via a two-step electrodeposition method from an aqueous solution. The electrodepositon device was carried out in a three electrodes system, in which the ITO glass was used as the working electrode and the electrolyte contained ZnCl2 (zinc chloride) and KCl (potassium chloride) aqueous solution which bubbled with oxygen. The first and second-step electrodeposition were played roles to deposit homogeneously ZnO seed layers and grow ZnO films respectively. The effects of electrodeposition conditions of ZnO seed layers, such as temperature, concentration of zinc ion, potential and deposition time on the nucleation process and diameter, morphology and properties of ZnO films were discussed.
These results showed that the morphology of ZnO was ununiform and contained rods, grains and plates by one-step electrodeposition. No matter which the electrodeposition factors of seed layers that were changed, the morphology of ZnO films were rods and obtained strong preferential orientation along the (0002).
To study the effect of electrodeposition temperature of seed layers, the temperature increased could accelerate growth of nucleus that enhancing the density on ITO substrate, but the surface altitude difference (Rmax) and roughness were decreased. The ZnO rods were oriented along the c-axis with increasing the temperature of electrodeposition of seed layers. When the temperature was 55 ℃, diameter distribution of ZnO rods was narrower than other temperature that almost distributed at 150 nm and the texture coefficient (TC) of (002) was 2.26.
To study the effect of zinc ion concentration of seed layers, it was found that the density of seed was proportional to the zinc ion concentration. ZnO films deposited on ZnO seed layers which electrodeposition at 1×10-3 M of zinc ion concentration had uniform diameters and higher transmittance.
When the reaction potential was increased from -0.6 V to -1.0 V, the growth density of nucleus was increased, however Rmax and rms decreased from 520.18 nm to 157.92 nm and 116.31 nm to 23.9 nm respectively. The morphology of ZnO films deposited on ZnO seed layers which electrodeposition at higher potentials was formed by compact rods, therefore the preferential orientation of (002) and transmittance of the film were higher than other conditions.
When deposition time of seed layers was increased from 5 min to 10 min, the Rmax and rms were respectively decreased that from 554.23 nm to 213.90 nm and 80.7 nm to 25.3 nm. However, the thickness of buffer layer was increased, and the transmittance was decreased.
摘要 I
Abstract IV
總目錄 VI
圖目錄 IX
表目錄 XV
第一章 緒論 1
1-1 前言 1
1-2 研究動機 4
第二章 理論基礎與文獻回顧 5
2-1 氧化鋅結晶結構 5
2-2 合成奈米氧化鋅之方法 8
2-2-1氣-液-固相法(vapor-liquid-solid,VLS) 11
2-2-2 化學氣相沉積法 (chemical vapor deposition,CVD) 11
2-2-3 化學溶液法(aqueous solution growth) 13
2-2-4 模板法(template-assisted synthesis) 13
2-3 電沉積法 16
2-3-1 電沉積法簡介 16
2-3-2 電沉積法的優勢 20
2-3-3 電化學的操作參數與發展 21
第三章 實驗方法與步驟 27
3-1成長原理 27
3-2實驗設備 28
3-2-1實驗用氣體與藥品 28
3-2-2儀器設備 28
3-3氧化鋅合成步驟 29
3-2-1基材前處理 29
3-2-2氧化鋅之成長 29
3-3 材料分析與性質量測 33
第四章 結果與討論 38
4-1 直接電沉積法成長氧化鋅 38
4-2 反應溫度對成長奈米氧化鋅的影響 40
4-2-1 改變第一階段反應溫度之比較 40
4-1-2 晶種層沉積溫度對氧化鋅的影響 46
4-2 鋅離子濃度對成長氧化鋅薄膜的影響 56
4-2-1 改變鋅離子濃度對晶種層表面型態之影響 57
4-2-2 第一階段鋅離子濃度對成長氧化鋅的影響 61
4-3 反應電壓對成長氧化鋅的影響 70
4-3-1 改變晶種層之沉積電壓的影響 72
4-3-2 晶種層之沉積電壓對氧化鋅薄膜的影響 76
4-4 反應時間對成長氧化鋅的影響 87
4-4-1 改變晶種層之沉積時間的影響 87
第五章 結論 94
參考文獻 97
誌謝 106
1.S.J. Pearton, D.P. Norton, K. Ip, Y.W. Heo, and T. Steiner, "Recent progress in processing and properties of ZnO," Superlattices and Microstructures, vol. 34, pp. 3-32, 2003.
2.Y.M. Mi, H. Odaka, and S. Iwata, "Electronic structures and optical properties of ZnO, SnO2 and In2O3," Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, vol. 38, pp. 3453-3458, 1999.
3.U. Ozgur, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S.J. Cho, and H. Morkoc, "A comprehensive review of ZnO materials and devices," Journal of Applied Physics, vol. 98, pp. 1-103, 2005.
4.J. Wang, Q. Li, and R.F. Egerton, "Probing the electronic structure of ZnO nanowires by valence electron energy loss spectroscopy," Micron, vol. 38, pp. 346-353, 2007.
5.C.Y. Jiang, X.W. Sun, G.Q. Lo, D.L. Kwong, and J.X. Wang, "Improved dye-sensitized solar cells with a ZnO-nanoflower photoanode," Applied Physics Letters, vol. 90, pp. 1-3, 2007.
6.J.Q. Xu, Q.Y. Pan, Y.A. Shun, and Z.Z. Tian, "Grain size control and gas sensing properties of ZnO gas sensor," Sensors and Actuators B-Chemical, vol. 66, pp. 277-279, 2000.
7.L.P. Schuler, M.M. Alkaisi, P. Miller, and R.J. Reeves, "UV sensing using surface acoustic wave device on DC sputtered ZnO monolayer," Microelectronic Engineering, vol. 83, pp. 1403-1406, 2006.
8.J. Xie, H. Deng, Z.Q. Xu, Y. Li, and J. Huang, "Growth of ZnO photonic crystals by self-assembly," Journal of Crystal Growth, vol. 292, pp. 227-229, 2006.
9.D.K. Hwang, S.H. Kang, J.H. Lim, E.J. Yang, J.Y. Oh, J.H. Yang, and S.J. Park, "p-ZnO/n-GaN heterostructure ZnO light-emitting diodes," Applied Physics Letters, vol. 86, pp. 1-3, 2005.
10.C.L. Jia, K.M. Wang, X.L. Wang, X.J. Zhang, and F. Lu, "Formation of c-axis oriented ZnO optical waveguides by radio-frequency magnetron sputtering," Optics Express, vol. 13, pp. 5093-5099, 2005.
11.G.G. Valle, P. Hammer, S.H. Pulcinelli, and C.V. Santilli, "Transparent and conductive ZnO: Al thin films prepared by sol-gel dip-coating," Journal of the European Ceramic Society, vol. 24, pp. 1009-1013, 2004.
12.D. Lincot, "Electrodeposition of semiconductors," Thin Solid Films, vol. 487, pp. 40-48, 2005.
13.M. Izaki, "Preparation of transparent and conductive zinc oxide films by optimization of the two-step electrolysis technique," Journal of the Electrochemical Society, vol. 146, pp. 4517-4521, 1999.
14.J. Elias, R. Tena-Zaera, and C. Levy-Clement, "Electrochemical deposition of ZnO nanowire arrays with tailored dimensions," Journal of Electroanalytical Chemistry, vol. 621, pp. 171-177, 2008.
15.M. Guo, C.Y. Yang, M. Zhang, Y.J. Zhang, T. Ma, and X.D. Wang, "Effects of preparing conditions on the electrodeposition of well-aligned ZnO nanorod arrays," Electrochimica Acta, vol. 53, pp. 4633-4641, 2008.
16.C. Levy-Clement, J. Elias, and R. Tena-Zaera, "Electrodeposition of arrays of ZnO nanostructures and application to photoelectrochemical devices," San Diego, CA, vol. 6340, pp. 63400R.1-63400R.12, 2006.
17.S.F. Wei, J.S. Lian, X.J. Chen, and Q. Jiang, "Effects of seed layer on the structure and property of zinc oxide thin films electrochemically deposited on ITO-coated glass," Applied Surface Science, vol. 254, pp. 6605–6610, 2008.
18.Y. Sato, T. Yamamoto, and Y. Ikuhara, "Atomic structures and electrical properties of ZnO grain boundaries," Journal of the American Ceramic Society, vol. 90, pp. 337-357, 2007.
19.C. Klingshirn, "ZnO: From basics towards applications," Physica Status Solidi B-Basic Solid State Physics, vol. 244, pp. 3027-3073, 2007.
20.L.F. Xu, Y. Guo, Q. Liao, J.P. Zhang, and D.S. Xu, "Morphological control of ZnO nanostructures by electrodeposition," Journal of Physical Chemistry B, vol. 109, pp. 13519-13522, 2005.
21.Z. Wang, "Nanostructures of zinc oxide," Materials Today, vol. 7, pp. 26-33, 2004.
22.Z. L. Wang, "Zinc oxide nanostructures: growth, properties and applications," Journal of Physics-Condensed Matter, vol. 16, pp. R829-R858, 2004.
23.Y.F. Gao, M. Nagai, Y. Masuda, F. Sato, and K. Koumoto, "Electrochemical deposition of ZnO film and its photoluminescence properties," Journal of Crystal Growth, vol. 286, pp. 445-450, 2006.
24.Y.W. Tang, L.J. Luo, Z.G. Chen, Y. Jiang, B.H. Li, Z.Y. Jia, and L. Xu, "Electrodeposition of ZnO nanotube arrays on TCO glass substrates," Electrochemistry Communications, vol. 9, pp. 289-292, 2007.
25.P.C. Chang, Z.Y. Fan, D.W. Wang, W.Y. Tseng, W.A. Chiou, J. Hong, and J.G. Lu, "ZnO nanowires synthesized by vapor trapping CVD method," Chemistry of Materials, vol. 16, pp. 5133-5137, 2004.
26.A.E. Rakhshani, A. Bumajdad, and J. Kokaj, "ZnO films grown by successive chemical solution deposition," Applied Physics a-Materials Science & Processing, vol. 89, pp. 923-928, 2007.
27.X.P. Shen, A.H. Yuan, Y.M. Hu, Y. Jiang, Z. Xu, and Z. Hu, "Fabrication, characterization and field emission properties of large-scale uniform ZnO nanotube arrays," Nanotechnology, vol. 16, pp. 2039-2043, 2005.
28.B. Liu, Z.D. Hu, Y. Che, A. Allenic, K. Sun, and X.Q. Pan, "Growth of ZnO nanoparticles and nanorods with ultrafast pulsed laser deposition," Applied Physics a-Materials Science & Processing, vol. 93, pp. 813-818, 2008.
29.G.C. Yi, C.R. Wang, and W.I. Park, "ZnO nanorods: synthesis, characterization and applications," Semiconductor Science and Technology, vol. 20, pp. S22-S34, 2005.
30.P.D. Yang, H.Q. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R.R. He, and H.J. Choi, "Controlled growth of ZnO nanowires and their optical properties," Advanced Functional Materials, vol. 12, pp. 323-331, 2002.
31.L. Schmidt-Mende and J. L. MacManus-Driscoll, "ZnO - nanostructures, defects, and devices," Materials Today, vol. 10, pp. 40-48, 2007.
32.P. Karlsson, Surface Science Studies of Metal Oxides Formed by Chemical Vapour Deposition on Silicon: Acta Universitatis Upsaliensis, 2006.
33.J. Sun, D. A. Mourey, D. L. Zhao, T. N. Jackson, "ZnO thin film, device, and circuit fabrication using low-temperature PECVD processes," Journal of Electronic Materials, vol. 37, pp. 755-759, 2008.
34.S. J. Young, L. W. Ji, S. J. Chang, T. H. Meen, K. J. Chen, "A ZnO-based MOSFET with a photo-CVD SiO2 gate oxide," Semiconductor Science and Technology, vol. 24, pp. 1-4, 2009.
35.L. Vayssieres, K. Keis, A. Hagfeldt, and S.E. Lindquist, "Three-dimensional array of highly oriented crystalline ZnO microtubes," Chemistry of Materials, vol. 13, pp. 4395-4398, 2001.
36.J.G. Lu, P.C. Chang, and Z.Y. Fan, "Quasi-one-dimensional metal oxide materials - Synthesis, properties and applications," Materials Science & Engineering R-Reports, vol. 52, pp. 49-91, 2006.
37.M. J. Zheng, L. D. Zhang, G. H. Li and W. Z. Shen, "Fabrication and optical properties of large-scale uniform zinc oxide nanowire arrays by one-step electrochemical deposition technique," Chemical Physics Letters, vol. 363, pp. 123-128, 2002.
38.K. Y. Shi, B. F. Xin, Y. J. Chi and H. G. Fu, "Assembling porous Fe2O3 nanowire arrays by electrochemical deposition in mesoporous silica SBA-16 films," Acta Chimica Sinica, vol. 62, pp. 1859-1861, 2004.
39.X. M. Liu and Y. C. Zhou, "Electrochemical deposition and characterization of Cu2O nanowires," Applied Physics a-Materials Science & Processing, vol. 81, pp. 685-689, 2005.
40.T. S. Mintz, Y. V. Bhargava, S. A. Thorne, R. Chopdekar, V. Radmilovic, Y. Suzuki and T. M. Devine, "Electrochemical synthesis of functionalized nickel oxide nanowires," Electrochemical and Solid State Letters, vol. 8, pp. D26-D30, 2005.
41.Y. H. Chen, X. T. Zhang, Z. H. Xue, Z. L. Du and T. J. Li, "Preparation of SnO2 nanowires by AC electrodeposition in anodic alumina template and its deposition conditions," Journal of Inorganic Materials, vol. 20, pp. 59-64, 2005.
42.I. Zhitomirsky, "Cathodic electrodeposition of ceramic and organoceramic materials. Fundamental aspects," Advances in Colloid and Interface Science, vol. 97, pp. 279-317, 2002.
43.A. R. Boccaccini and I. Zhitomirsky, "Application of electrophoretic and electrolytic deposition techniques in ceramics processing," Current Opinion in Solid State & Materials Science, vol. 6, pp. 251-260, 2002.
44.胡啟章,電化學原理與方法,五南,2002。
45.B. Illy, B.A. Shollock, J.L. MacManus-Driscoll, and M.P. Ryan, "Electrochemical growth of ZnO nanoplates," Nanotechnology, vol. 16, pp. 320-324, 2005.
46.G. Hodes, "Physical Electrochemistry," Rubinstein, editor Marcel Dekker New York, p. 515, 1995.
47.J. Switzer, "The n Silicon/Thallium (III) Oxide Heterojunction Photoelectrochemical Solar Cell," Journal of the Electrochemical Society, vol. 133, pp. 722-728, 1986.
48.R. Chaim, I. Silberman and L. Gal Or, "Electrolytic ZrO Coatings," Journal of the Electrochemical Society, vol. 138, pp. 1939-1942, 1991.
49.S. Peulon and D. Lincot, "Cathodic electrodeposition from aqueous solution of dense or open-structured zinc oxide films," Advanced Materials, vol. 8, pp. 166-170, 1996.
50.M. Izaki and T. Omi, "Transparent zinc oxide films prepared by electrochemical reaction," Applied Physics Letters, vol. 68, pp. 2439-2440, 1996.
51.T. Yamamoto, T. Shiosaki and A. Kawabata, "Characterization of ZnO piezoelectric films prepared by rf planar-magnetron sputtering," Journal of Applied Physics, vol. 51, pp. 3113-3120, 1980.
52.M. Izaki and T. Omi, "Electrolyte optimization for cathodic growth of zinc oxide films," Journal of the Electrochemical Society, vol. 143, pp. L53-L55, 1996.
53.M. Izaki and T. Omi, "Characterization of transparent zinc oxide films prepared by electrochemical reaction," Journal of the Electrochemical Society, vol. 144, pp. 1949-1952, 1997.
54.G. Mohanty and L. Az roff, "Electron Density Distributions in ZnO Crystals," The Journal of Chemical Physics, vol. 35, p. 1268, 1961.
55.S. Peulon and D. Lincot, "Mechanistic study of cathodic electrodeposition of zinc oxide and zinc hydroxychloride films from oxygenated aqueous zinc chloride solutions," Journal of the Electrochemical Society, vol. 145, pp. 864-874, 1998.
56.B. Canava and D. Lincot, "Nucleation effects on structural and optical properties of electrodeposited zinc oxide on tin oxide," Journal of Applied Electrochemistry, vol. 30, pp. 711-716, 2000.
57.T. Pauporte and D. Lincot, "Hydrogen peroxide oxygen precursor for zinc oxide electrodeposition I. Deposition in perchlorate medium," Journal of the Electrochemical Society, vol. 148, pp. C310-C314, 2001.
58.H. El Belghiti, T. Pauporte, and D. Lincot, "Mechanistic study of ZnO nanorod array electrodeposition," Physica Status Solidi a-Applications and Materials Science, vol. 205, pp. 2360-2364, 2008.
59.G.W. She, X.H. Zhang, W.S. Shi, X. Fan, and J.C. Chang, "Electrochemical/chemical synthesis of highly-oriented single-crystal ZnO nanotube arrays on transparent conductive substrates," Electrochemistry Communications, vol. 9, pp. 2784-2788, 2007.
60.曾勝群,”利用丙烯酸電漿聚合法對雙軸延伸PTFE表面改質之研究”,中原大學化學系碩士論文,2002。
61.Y. Kim, H. Shang, and G. Cao, "Growth and Characterization of [001] ZnO Nanorod Array on ITO Substrate with Electric Field Assisted Nucleation," Journal of Sol-Gel Science and Technology, vol. 38, pp. 79-84, 2006.
62.D. Jiles, Introduction to the electronic properties of materials: CRC Press, 2001.
63.G. F. Huttig and H. Moldner, "Active oxides LXIII Specific heat of crystallised zinc hydroxides and the calculation of affinities between zinc oxide and water," Zeitschrift Fur Anorganische Und Allgemeine Chemie, vol. 211, pp. 368-378, 1933.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊