跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/06 10:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:哀嘉華
研究生(外文):Chia-Hua Ai
論文名稱:無汞平面螢光燈之發光效率研究
論文名稱(外文):Study of luminance efficiency in mercury-free flat fluorescent lamp
指導教授:黃振球黃振球引用關係
指導教授(外文):Jenn-Chiu Hwang
學位類別:碩士
校院名稱:元智大學
系所名稱:化學工程與材料科學學系
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:97
語文別:中文
論文頁數:88
中文關鍵詞:平面螢光燈介電質放電二次電子
外文關鍵詞:Flat fluorescent lampDielectric barrier dischargeSecondary electrons
相關次數:
  • 被引用被引用:0
  • 點閱點閱:203
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用濕式轉印技術製作出含有不同厚度(100、200、300μm)螢光粉層、反射層(BaSO4)以及低功率材料(CsOH、CsCO3、CsWO4、CsI)之無汞平面螢光燈,並透過光學及電氣分析探討發光效率與其之關係。
從墊高放電區實驗結果得知,螢光粉層高度越高時會使其吸收紫外線之機率增加,尤其在表面電荷量較少時其效應越大,因此頻率40kHz時之發光效率增加幅度會較70kHz明顯。此外,在反射層實驗結果中得知,使用具有高介電常數(11.4)和高反射率(90%)的材料(BaSO4)作為平面螢光燈體中之反射層,其發光效率會隨頻率增加而增加,但當頻率超過60kHz時反而會因發光已達飽和狀態使得其發光效率增加幅度不大。而從低功率材料實驗之光電特性分析上得知,在低頻及低電壓時低功率材料影響效應會最大,反之在頻率越高其效應越不明顯,這是因為二次電子數量如果太多時會使燈體內有效碰撞降低,進而降低螢光粉層吸收真空紫外線(VUV)之機率;另外,在電氣分析上得知若燈體內螢光粉層表面上含有容易放出二次電子(Secondary Electrons)之低功率材料時,則會有助於湯生雪崩(Thomson Avalanche. Effect)效應之產生,此效應會降低平面螢光燈電壓進而提升其發光效率;此外,從老化測試結果可知燈體內添加低功率材料雖能提升亮度維持度,但對燈體色座標確會使其產生偏高現象(大約0.005~0.01之間) 。
最後,我們將上述三個實驗(墊高放電區、反射層、低功率材料)之最佳參數結合在最佳化實驗中分析得知,40kHz時其發光效率可提升14%左右,隨著頻率越高發光效率增益幅度越小,當頻率增加至70kHz時其發光效率僅提升3.7%左右。由此可知發光效率並不會因為實驗加成而成正比,反而會互相干涉。
In this study, mercury-free flat fluorescent lamps use wet-transfer technology to manufacture the different thickness of phosphor (100,200,300μm), reflective layer (BaSO4) and the material of small work function layer (CsOH, CsCO3, CsWO4, CsI). Through the analysis of optical and electrical discuss the efficiency of their relationship.
As result experimentation of phosphors increase in discharge area, the higher phosphors thickness so that it will increase the chance of absorbing ultraviolet light, particularly in the surface charge less when the greater its effect, and therefore the range of efficiency increase of frequency in 40kHz is more obvious then 70kHz. In addition, the reflector layer in the experimental results that the use of the material (BaSO4) with high dielectric constant (11.4) and high reflectivity (90%) as the plane fluorescent reflector with its efficiency increase as the frequency increased, but the frequency over 60kHz it will have reached saturation point due to the range of its efficiency is slow down. By reason of the optical characteristics analysis about the material experimentation of small work function, effects of the impact will be greatest in the low-frequency and low-voltage, in contrast, the higher frequency of its effect is not obvious because the number of secondary electron if too many, when the effectively reduce the collision in the lamp body, and lower phosphor layer to absorb the vacuum ultraviolet (VUV) of probability. In addition, electrical analysis that if the lamp body on the surface layer off easily with secondary electron (Secondary Electrons) on the material of small work function, will contribute to Thomson Avalanche (Thomson Avalanche. Effect), the effect will reduce the voltage to enhance its efficiency in flat fluorescent lamps; then we can see the lamp with the material of small work function to enhance the efficiency of its luminous from the aging of testing results, but color coordinates of the lamp will occur to the higher color coordinates
(approximately between 0.01 to 0.005)
Finally, we will combine the best parameters of the above-mentioned (phosphors increase in discharge area, reflective layer, the material of small work function) in the best-informed analysis of the experiment, in 40 kHz the efficiency enhance about 14%, the efficiency gain the smaller the margin with more frequency, the increasing frequency to 70kHz only to enhance the efficiency about 3.7%. That proves the efficiency will not be in direct proportion experiment and the addition, it will interfere with each other.
書名頁....................................................i
論文口試委員審定書 .......................................ii
授權書..................................................iii
中文摘要.................................................iv
英文摘要.................................................vi
誌謝.....................................................ix
目錄......................................................x
圖目錄..................................................xiv
表目錄................................................xviii
第一章 緒論...............................................1
1-1研究背景概述...........................................1
1-1-1液晶顯示器概述.......................................1
1-1-2背光模組.............................................4
1-1-3 冷陰極螢光燈管......................................7
1-1-4 平面光源............................................9
1-2 研究目的.............................................15
1-3 本文大綱.............................................17
第二章 原理..............................................18
2-1 前言.................................................18
2-2 平面螢光燈原理.......................................18
2-2-1 平面螢光燈發光原理.................................18
2-2-2 氙氣(Xe)反應機構...................................19
2-2-3 壁電荷效應(Effect of Wall Charge)..................21
2-2-4 湯生雪崩效應(Thomson Avalanche Effect).............24
2-2-5 電極效應...........................................25
2-2-6 氣體放電之全伏安特性曲線(Volt-Ampere Characteristic Curves)(5)...............................................28
2-2-7 電氣特性...........................................31
2-2-8 低功率材料.........................................34
第三章 實驗方法..........................................36
3-1 實驗.................................................36
3-1-1墊高放電區實驗......................................36
3-1-2反射層實驗..........................................38
3-1-3 低功率材料實驗.....................................38
3-1-4驗證實驗............................................39
3-2實驗儀器及材料........................................41
3-2-1實驗儀器............................................41
3-2-2實驗材料............................................42
3-3實驗量測條件..........................................42
3-4實驗手法..............................................43
3-4-1墊高放電區實驗......................................43
3-5光學及電氣量測手法....................................45
第四章 實驗結果與討論....................................49
4-1 墊高放電區實驗探討...................................49
4-1-1 光學及電氣分析.....................................50
4-1-2 墊高效應分析.......................................52
4-1-3 均勻度分析.........................................55
4-2 反射層實驗探討.......................................58
4-2-1 光電特性分析.......................................59
4-2-2 膜厚分析...........................................63
4-3 低功率材料實驗探討...................................65
4-3-1 光電分析...........................................66
4-3-2 二次電子效應分析...................................74
4-3-3 老化分析...........................................76
4-4 最佳化實驗...........................................78
4-4-1 光電分析...........................................78
第五章 總結..............................................81
第六章 未來工作..........................................84
參考文獻.................................................85
1.利冠增,"具數位調光控制之平面螢光燈背光驅動電路",成功大學電機所碩士論文 (2006).
2.Austin,"08年Q2全球電視供貨量增長11%,北美業績出色",DisplySearch (2008).
3.Kyle,"液晶面板在2008年仍出貨強勁",科技產業資訊室 (2008)。
4.陳志豪,"接合式平面燈特性之分析與研究",高雄應用科技大學電機所碩士論文 (2006).
5.馮華,"冷陰極管(CCFL)原理與製作技術",全華圖書.
6.李孝貽,"淺談無汞氣體放電平面燈源",影像顯示科技人才培育網 知識平台 (2006).
7.http://www.lumi.com.tw/ch_utf8/?q=taxonomy/term/1
8.http://www.osram.com/osram_com/Professionals/General_Lighting/Flat_panel_light_source/Technology/index.html
9.H. Motomura, K. H. LOO, Y. IKEDA, M. JINNO, M. AONO, "Temporal VUV Emission Characteristics Related to Generations and Losses of Metastable Atoms in Xenon Pulsed Barrier Discharge", J. Light & Vis. Env., Vol.30, No.2, p35-40 (2006).
10.M. Jinno, H. Motomura, K. H. Loo, M. Aono, "Emission Characteristics of Xenon and Xenon-Rare Gas Dielectric Barrier Discharge Fluorescent Lamps", J. Light & Vis. Env., Vol.29, No.3, p13-20 (2005).
11.T. Shiga, S. Mikoshiba, S. Shinada, "Mercury-Free, High-Luminance and High-Efficacy Flat Discharge Lamp for LCD Backlighting", Elec. and Comm. in Japan, Vol.84, p.55-63 (2001).
12.Y. Xue, Q. Li, Y. Wu, "A Novel Electrode Structure for Plasma Flat Backlights in LCD", Proc. of ASID , p164-167 (2006).
13.X. Xu, "Dielectric Barrier Discharge-Properties and Appliccations", Thin Solid Films, p.237-242 (2001).
14.H. B. Park, S. E. Lee, G. Y. Kim, Y. D. Lee, K. C. Choi, "Effect of Dual Coplanar Electrodes on Mercury-Free Flat Fluorescent Lamps for Liquid Crystal Display", Journal of Display Technology, Vol.2, NO.1, p60-67 (2006).
15.Y. S. Seo, S. M. Lee, J. K. Lee, "Improvement of Luminous Efficiency in A Mercury-Free Flat Fluorescent Lamp (FFL) By Using Fluid Simulation", ELSEVIER , (2006).
16.Y. S. Seo, S. M. Lee, J. K. Lee, "Three-Dimensional Simulations of Patterned Electrodes in Mercury-Free Flat Fluorescent Lamps", IEEE trans. On Plasma Science, Vol.36, NO.4, p1182-1183 (2008).
17.林偉雄,"鋁基電極鈦酸鍶鋇薄膜電容研製",交通大學機械所碩士論文 (2006).
18.M. G. Kwak, J. I. Han, Y. H. Kim, S. K. Park, K. K. Lee, S. H. Sohn, "Improvement of Luminance Efficiency in Xenon Dielectric Barrier Discharge Flat Lamp", IEEE trans. On Plasma Science, Vol.31, NO.1, p176-179 (2003).
19.J. B. Baek, J. H. Park, B. H. Cho, "MFFL Driving System With Current Feedback Maintaining Glow Discharge Mode", The 7th International Conference on Power Electronics, p990 (2007).
20.J. Lee, J. Jung, B. O., I. Seo, J. Kim, K. W. Whang, "The Electro – Optic Characteristics of MFFL (Mercury – Free Flat Fluorescent Lamp) for LCD Backlighting", SID 06 Digest, p1422-1424 (2006).
21.J. H. Park, I. K. Lee, B. H. Cho, J. K. Lee, K. W. Whang, "High Efficiency Inverter Systems for Driving Mercury – Free Flat Fluorescent Lamps", IEEE, p717-720 (2007).
22.J. H. Park, J. B. Baek, B. H. Cho, "Current – Sourced Push – Pull Inverter for Mercury – Free Flat Fluorescent Lamp Driving", SID 08 Digest, p1560-1563 (2008).
23.Y. S. Kim, J. Y. Lee, K. M. Huh, S. Lim, M. H. Oh, "An Efficiency Improvement Method of Flat – Fluorescent – Lamp (FFL) Backlight", SID 06 Digest, p500-502 (2006).
24.H. Yamashita, H. Yamazaki, T. Teraka, S. Kihara, "Low-Pressure Discharge Lamp and Back Light Device Using Same", Patent No.:7,358,675 (2008).
25.G. Oversluizen, S. d. Zwart, M. F. Gillies, T. Dekker, T. J. Vink, "The Route Towards a High Efficacy PDP; Influence of Xe Partial Pressure, Protective Layer, and Phosphor Saturation", Microelectronics Journal, p319-324 (2004).
26.J. G. Speight, " Perry’s Standard Tables and Formulas for Chemical Engineers ", McGraw-Hill Professional, (2003).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top