跳到主要內容

臺灣博碩士論文加值系統

(34.226.244.254) 您好!臺灣時間:2021/08/03 00:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭貴元
研究生(外文):Kuei-Yuan Cheng
論文名稱:氧化鋯溶膠性質對噴霧熱分解製備氧化鋯微粒的影響之探討
論文名稱(外文):The influence of Zirconia Sol Properties on the Characteristics of Spray Pyrolysis Derived Zirconia Particles
指導教授:張幼珍
指導教授(外文):Yu-Chen Cheng
學位類別:博士
校院名稱:元智大學
系所名稱:化學工程與材料科學學系
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:120
中文關鍵詞:溶膠噴霧自然對流誘導的膠結動態光散射
外文關鍵詞:Sol sprayConvection-induced coagulationDLS
相關次數:
  • 被引用被引用:1
  • 點閱點閱:185
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要目標在研究以水熱法製備氧化鋯溶膠的溶膠成長機制,以及溶膠特性對以噴霧熱分解所製備之氧化鋯微粒特性的影響。研究中利用動態光散射監測不同起始濃度和回流時間對氧化鋯溶膠微粒成長的影響,測量結果顯示S形的成長曲線,且不同時段區間有不同的斜率,暗示可能是不同膠結成長機制所導致。以電子顯微鏡和動態光散射同步分析氧化鋯溶膠的粒徑和形貌,以場發射掃瞄式電子顯微鏡觀察一個最終氧化鋯微粒,發現微粒成長是在針狀氧化鋯結晶達到一個臨界值後開啟第一階段的異相膠結,形成3-6 nm(0.05 M) 或6-16 nm (0.2 M)的小微粒,當此小微粒的數目濃度達到一個臨界值,即啟動第二階段的異相膠結,此階段微粒成長是以第一階段生成的小微粒自組裝形成四邊形的薄片(0.05 M)或厚片(0.2 M)。在低先驅物鹽濃度時,自然對流誘導的膠結會加速微粒的成長,但在高濃度時則不明顯,此結果與Melis et al. (1999)的模擬結果相符。
從前述溶膠研究中選擇具有粒徑,形狀和固含量等不同特性的溶膠,用於溶膠噴霧合成研究中,將合成出的球形粉體製作成TEM截面試片並做微球體內部構造的TEM觀察。結果顯示,使用較小含有尚未完全轉換的溶膠作為先驅物,不容易避免外殼的形成,相對的,使用較大粒徑溶膠微粒具有避免外殼形成的優點,以及隨後形成緻密微球體。然而,使用較小溶膠微粒時,微球體內部堆積更緊密且具有較小的微孔。此外,較小溶膠比較大溶膠更能在表面形成緊密堆積,產生堅固的殼層。溶膠微粒大小和溶膠微粒形狀對內部孔隙度影響很大。最後,包括像溶膠微粒形狀,大小和固含量對溶膠所得微球體緻密程度有很大的影響。
The objectives of this study are to investigate the growth mechanism of hydrothermally prepared zirconia sols and the effect of sol properties on the characteristics of spray derived zirconia particles. The characteristics of zirconia sol particles as a function of reflex time and starting precursor concentration were monitored by the dynamic light scattering technique. An S-shaped growth curve was revealed with the growth rate (slope) varying notably from one stage to the other, implying the existence of other coagulation mechanisms. Time-sequenced electron microscopy and DLS analyses were conducted in parallel along the curves and field emission scanning electron microscopy of full-grown particles was also taken. It was found that particles growth follows a two-stage heterocoagulation process with primary crystallites and small particles produced from the first-stage serving as building blocks for the first and second stages, respectively. Growth during the second stage is by self-assembly. Convection-induced coagulation leads to enhanced particle growth for a low precursor concentration but minimal growth for a higher one, both conform to the predictions of Melis et al.(1999).
A selection of sols of distinct properties such as size, shape, and solids content were used for subsequent sol-spray synthesis. Cross-section TEM of samples was performed. Overall, crust formation is an inevitable step when small unconverted or chemically-converted building blocks were used. Using larger sol particles has the advantage of avoiding crust formation and the formation of consolidated microspheres, while smaller basic building blocks results in more densely packed solid layer with small pores. Besides, small building blocks produce stronger crust owing to a denser packing of a surface layer than those made with larger ones. Beside particle size, sol particle shape can also impart some effect on internal porosity. Lastly, the solidity of sol-derived microspheres was shown not affected much by so particle shapes, size or solids content.
Page
Title Page
Acknowledges
Chinese Abstract ……………………………………………………………… I
English Abstract……………………………………………………………….. II
Table of Contents……………………………………………………………… III
List of Tables…………………………………………………………………... VI
Table of Figures……………………………………………………………….. VII
Table of Symbol……………………..………………………………………… XII
Chapter 1 Introduction…………………………………………………….. 1
Chapter 2 Literature Review……………………………………………… 3
2.0 Introduction……………………………………………………. 3
2.1 Basic Properties and Applications of Zirconia………………. 3
2.2 Particle Synthesis via Spray Pyrolysis……………………….. 6
2.2.1 Aerosol generation…………………………………….. 6
2.2.2 Droplet drying…………………………………………. 9
2.2.3 Pyrolysis of dried particles……………………………. 9
2.2.4 Cooling and transportation of pyrolyzed particles…………………………………………………
10
2.2.5 Particle collection………………………………………. 10
2.3 Particle Morphology of Spray Pyrolysis Derived Powders…. 10
2.3.1 Influence of heat source……………………………….. 12
2.3.2 Influence of atomizer type…………………………….. 15
2.3.3 Influence of precursor system…………………………. 15
2.3.3.1 Aqueous solution……………………………... 15
2.3.3.2 Organometallic precursors………………….. 25
2.3.3.3 Colloidal precursors…………………………. 26
2.4 Hydrothermal Synthesis of Zirconia Sols……………………. 37
2.4.1 Hydrothermal Synthesis………………………………. 37
2.4.2 Hydrothermal synthesis of zirconia sols……………… 40
2.4.3 Chemistry of aqueous zirconyl salt solutions………… 40
2.4.4 Hydrolysis and polymerization of zirconyl species…... 44
2.4.5 Primary and secondary particle formation…………... 49
2.4.6 Theoretical for particle growth by convection-induced coagulation………………………. 54
2.5 Motivation of this study……………………………………….. 55
Chapter 3 Experimental..…………………………………………………. 57
3.0 Objectives………………………………………………………. 57
3.1 Hydrothermal Synthesis of Zirconia Sols…………………….. 57
3.1.1 Experimental procedure……………………………….. 57
3.1.2 Monitoring sol particle size by DLS…………………... 58
3.1.3 Particle characterization by transmission electron microscopy (TEM)……………………………………...
60
3.1.4 Particle characterization by Field emission scanning electron microscopy (FE-SEM)………………………..
60
3.1.5 Crystallize size characterization by X-ray Diffraction (XRD)……………………………………………………
61
3.2 Particles Synthesis by Spray Pyrolysis……………………….. 61
3.2.1 Characterization of cross-section of particles………... 63
3.2.1.1 Ion milling……………………………………. 63
3.2.1.2 Ultramicrotome………………………………. 64
Chapter 4 Results and Discussion
Part I. Zirconia Colloidal Sol synthesized…………………….
65
4.0 Introduction……………………………………………………. 65
4.1 Growth mechanism of zirconium oxychloride solution……… 65
4.1.1 DLS growth curves…………………………………….. 65
4.1.2 Field-Emission Scanning Electron Microscopy....……. 68
4.1.3 X-ray Diffraction (XRD)………………………………. 69
4.2 Hydrothermal Synthesis of 0.05M ZrOCl2 Solution……...…. 70
4.2.1 8 hrs of reflex time…………………...………………… 70
4.2.2 24 hrs of reflex time………………...………………….. 74
4.2.3 72 hrs of reflex time………………...………………….. 76
4.2.4 Interpretation of the DLS curves: 0.05M ZC solution. 79
4.3 Zirconia Sol Synthesis of 0.2M ZrOCl2 Solution……….……. 80
4.3.1 12 hrs of reflex time…………………...………..……… 80
4.3.2 24 hrs of reflex time…………………...……………...... 82
4.3.3 72 hrs of reflex time…………….……...…………..…... 84
4.3.4 Interpretation of the DLS curves: 0.2M ZC solution... 86
Chapter 5 Results and Discussion
Part II. Sol-Spray of Zirconia Sols…………………………….
87
5.1 Microspheres prepared from ZC solution……………. 87
5.2 Histograms of Zirconia Sols before and after Ultrasonic Nebulization………………………………...
90
5.3 Sol-Sprayed Microspheres…………………………….. 98
Chapter 6 Conclusions……………………………………………………... 109
References……………………………………………………………………… 111
1.M. Abdullah, S Shibamoto, and K. Okuyama, “Synthesis of ZnO/SiO2 Nanocomposites Emitting Specific Luminescence Colors”, Optical Materials, 26, 95 (2004)
2.M. Abdullah, S. Shibamoto, K. Okuyama and F. G. Shi, “Stable Photoluminescence of Zinc Oxide Quantum Dots in Silica Nonoparticls Matrix prepared by the Combined Sol-Gel and Spray Drying Method”, Journal of Applied Physics, 89, 6431 (2001)
3.J. H. Brewster and T. T. Kodas, “Generation of Unagglomerated, Dense, BaTiO3 Particles by Flame-Spray Pyrolysis”, AIChE Journal, 43, 2665 (1997)
4.A. Bleier and R. M. Cannon, “Nucleation and Growth of Uniform m-ZrO2”, Materials Research Society Symposia Proceeding, 73, 71 (1986)
5.C. H. Byers, M. T. Harris, and D. F. Williams, “Controlled Microcrystalline Growth Studies by Dynamic Laser-Scattering Methods”, Industrial & Engineering Chemistry Research, 26, 1916 (1987)
6.K. Byrappa and M. Yoshimura, Handbook of Hydrothermal Technology, William Andrew, New York (2001)
7.K. Biswas, Barun Das, and C. N. R. Rao, “Growth Kinetics of ZnO Nanorods: Capping-Dependent Mechanism and Other Interesting Features”, The Journal of Physical Chemistry C, 112, 2404 (2008)
8.F. Barreras, H. Amaveda, and A. Lozano, “Transient High-Frequency Ultrasonic Water Atomization”, Experiments in Fluids, 33, 405 (2002)
9.C. J. Brinker and G. W. Scherer, Sol-Gel Science - The Physics and Chemistry of Sol-Gel Processing, Academic Press, New York (1990)
10.A. Clearfield and P. A. Vaughan, “The Crystal Structure of Zirconyl Chloride Octahydrate and Zirconyl Bromide Octahydrate”, Acta Crystallographica, 9, 555 (1956)
11.A. Clearfield, “Crystalline Hydrous Zirconia”, Inorganic Chemistry, 3, 146 (1964)
12.A. Clearfield, “Structural Aspects of Zirconium Chemistry”, Review of Pure and Applied Chemistry, 14, 91 (1964)
13.A. Clearfield, “The Mechanism of Hydrolytic Polymerization of Zirconyl solutions”, Journal of Materials Research, 5, 161 (1990)
14.S. Che, O. Sakurai, K. Shinozaki, and N. Mizutani, “Particle Structure Control Through Interparticle Reactions by Spray Pyrolysis”, Journal of Aerosol Science, 29, 271 (1998)
15.S. -L. Che, K. Takada, K. Takashima, O. Sakurai, K. Shinozaki and N. Mizutani, “ Preparation of Dense and Hollow NiO Particles by Spray Pyrolysis”, Journal of Materials Science, 34, 1313 (1999)
16.K. L. Chen, Anthony S. T. Chiang, and H. K. Tsao, “Preparation of Zirconia Nanocrystals from Concentrated Zirconium Solutions”, Journal of Nanoparticle Research, 3, 119 (2001)
17.K. Y. Cheng, “Optimization of Spray Pyrolysis Aerosol Reactor: Effect of Reactor Design on Product Yield”, Master Thesis, Yuan Ze University (1999)
18.C. H. Chao and P. D. Ownby, “Ultrasonic Spray Pyrolysis of a Chelated Precursor into Spherical YBa2Cu3O7-x High Temperature Superconductor Powders”, Journal of Materials Science, 30, 6136 (1995)
19.C. D. Chandler, Q. Powell, M. J. Hampden-Smith and T. T. Kodas, “Generation of Metal Titanate Powders by Spray Pyrolysis using Single Source Precursors”, Journal of Materials Chemistry, 3, 775 (1993)
20.M. Cauchetier, X. Armand, N. Herlin, M. Mayne, S. Fusil and E. Lefevre, “Si/C/N nanocomposite powders with Al (and Y) additives obtained by laser spray pyrolysis of organometallic compounds”, Journal of Materials Science, 34, 5257 (1999)
21.D. H. Charlesworth and W. R. Marshall, Jr,, “Evaporation from Drops Containing Dissolved Solids”, AIChE J, 6, 9-23 (1960)
22.Y. S. Chung, Y. C. Park, and S. B. Park, “Luminescence and CL Saturation Characteristics of Eu doped Y-Al-O Multicomposition Phosphor Prepared by Spray Pyrolysis”, Journal of the Electrochemical Society, 151, H180 (2004)
23.J. Chevalier, “What Future for Zirconia as a Biomaterial?”, Biomaterials, 27, 535 (2006)
24.S. Y. Cho , I. T. Kim, D. Y. Kim, S. J. Park, B. K. Kim, and J. H. Lee, “Effects of H2O2 on the morphology of ZrO2 powder prepared by ultrasonic spray pyrolysis”, Materials Letters, 32, 271 (1997)
25.R. Clift, J.R. Grace and M.E. Weber, Bubbles, Drops, and Particles, Academic Press, New York (1978)
26.L. D’Souza, A. Suchopar, and R. M. Richards, “In situ Approaches to Establish Colloidal Growth Kinetics”, Journal of Colloidal and Interface Science, 279, 458 (2004)
27.B. Dubois, D. Ruffier, and P. Odier, “Preparation of Fine, Spherical Yttria-Stabilized Zirconia by the Spray Pyrolysis Method, Journal of the American Ceramic Society, 72, 713 (1989)
28.W. J. Dawson, “Hydrothermal Synthesis of Advanced Ceramic Powders”, American Ceramic Society Bulletin, 67, 1673 (1988)
29.H. E. Esparza-Ponce, A. Reyes-Rojas, W. Antúnez-Flores, M. Miki-Yoshida, “Synthesis and Characterization of Spherical Calcia Stabilized Zirconia Nano-Powders Obtained by Spray Pyrolysis”, Materials Science and Engineering A, 343, 82 (2003)
30.L. H. Edelson, and A. M. Glaeser, “Role of Particle Substructure in the Sintering of Monosized Titania”, Journal of the American Ceramic Society, 71, 225 (1988)
31.J. R. Fryer, J. L. Hutchison, and R. Paterson, “An Electron Microscopic Study of the Hydrolysis Products of Zirconyl Chloride”, Journal of Colloidal and Interface Science, 34, 238 (1970)
32.M. Fujita, H. Yoshimatsu, A. Osaka and Y. Miura, “Preparation and Properties of ZrO2-Al2O3 Ceramic, Journal of Ceramic Society of Japan, 103, 81 (1995)
33.A. Gurav, T. T. Kodas, T. Pluym, Y. Xiong, “Aerosol Processing of Materials”, Aerosol Science and Technology, 19, 411 (1993)
34.J. L. Gole, S. M. Prokes, J. D. Stout, O. J. Glembocki, and R. Yang, “Unique Properties of Selectively Formed Zirconia Nanostructures”, Advanced Materials, 18, 664 (2006)
35.Michael Z.-C. Hu, M. T. Harris, and C. H. Byers, “Nucleation and Growth for Synthesis of Nanometric Zirconia Particles by Forced Hydrolysis”, Journal of Colloidal and Interface Science, 198, 87-99 (1998)
36.Michel Z. C. Hu, R. D. Hunt, E. A. Payzant, and C. R. Hubbard, “Nanocrystallization and Phase Transformation in Monodispersed Ultrafine Zirconia Particles from Various Homogenous Precipitation Methods”, Journal of the American Ceramic Society, 82, 2313 (1999)
37.Michael Z.-C. Hu, J. T. Zielke, J. -S. Lin, and C. H. Byers, “Small-angle x-ray scattering studies of early-stage colloid formation by thermohydrolytic polymerization of aqueous zirconyl salt solutions”, Journal of Materials Research, 14, 103 (1999)
38.Michael Z. –C. Hu, E. A. Payzant, and C. H. Byers, “Sol-Gel and Ultrafine Particle Formation via Dielectric Tuning of Inorganic Salt-Alcohol-Water Solutions”, Journal of Colloidal and Interface Science, 222, 20 (2000)
39.Y. X. Huang and G. J. Guo, “Synthesis nanosized zirconia particles via urea hydrolysis”, Powder Technology, 72, 101 (1992)
40.N. Herlin, M. Luce, E. Musset, and M. Cauchetier, “Synthesis and Characterization of Nanocomposite Si/C/N Powders by Laser Spray Pyrolysis of Hexamethyldisilazane”, Journal of the European Ceramic Society, 13, 285 (1994)
41.N. Herlin, X. Armand, E. Musset, H. Martinengo, M. Luce and M.Cauchetier, “Nanometric %-Based Oxide Powders: Synthesis by Laser Spray Pyrolysis and Characterization”, journal of the European Ceramic Society, 16, 1063 (1996)
42.Y. Hu and P. W. Carr, “Synthesis and Characterization of New Zirconia-Based Polymeric Cation-Exchange Stationary Phases for High-Performance Liquid Chromatography of Proteins”, Analytical Chemistry, 70, 1934 (1998)
43.L. L. Hench and J. K. West, “The Sol-Gel Process”, Chemical Reviews, 90, 33 (1990)
44.R. Hogg, T.W. Healy, and D.W. Fuerstenau, “Mutual coagulation of colloidal dispersions”, Transactions of the Faraday Society, 62, 1638 (1966).
45.F. Iskandar, I. W. Lenggoro, T. O. Kim, N. Nakao, M. Shimada, and K. Okuyama, “Fabrication and Characterization of SiO2 Particles Generated by Spray Method for Standard Aerosol”, Journal of Chemical Engineering of Japan, 34, 1285 (2001)
46.Ishizawa, O. Sakurai, N. Mizutani, and M. Kato, “Homogenous Y2O3-Stabilized ZrO2 Powder by Spray Pyrolysis Method”, American Ceramic Society Bulletin, 65, 1399 (1986)
47.F. Iskandar, H. Chang, and K. Okuyama, “Preparation of Microencapsulated Powders by an Aerosol Spray Method and Their Optical Properties”, Advanced Powder Technology, 14, 349 (2003)
48.F. Iskandar, L. Gradon, and K. Okuyama, “Control of the morphology of nanostructured particles prepared by the spray drying of a nanoparticle sol”, Journal of Colloid and Interface Science, 265, 296 (2003)
49.P. Jakubus, A. Adamski, M. Kurzawa, and Z. Sojka, “Texture of Zirconia Obtained by Forced Hydrolysis of ZrOCl2 Solutions”, Journal of Thermal analysis and Calorimetry, 72, 299 (2003)
50.V. Jokanović, Dj. Janaćković, A. M. Spasić and D. Uskoković, “Synthesis and Formation Mechanism of Ultrafine Spherical Al2O3 Powders by Ultrasonic Spray Pyrolysis, Materials Transactions, JIM, 37, 627 (1996)
51.D. Janaćković, V. Jokanović, L. Kostić-Gvozdenović, L. Živković, and D. Uskoković, “Synthesis, Morphology, and Formation Mechanism of Mullite Particles Produced by Ultrasonic Spray Pyrolysis”, Journal of Materials Research, 11, 1706 (1996)
52.J. S. Johnson and K. A. Kraus, “Hydrolytic Behavior of Metal Ions. VI, Ultracentrifugation of Zirconium(IV) and Hafnium(IV); Effect of Acidity on the Degree of Polymerization”, Journal of the American Chemical Society, 78, 3937 (1956)
53.J. A. Juston, R. M. Richardson, S. L. Jones, and C. Norman, “Small angel X-ray scattering Studies of Polymeric Zirconium Species in Aqueous Solution”, Better Ceramics Through Chemistry IV, B. J. Zelinski, C. J. Brinker, D. E. Clark and D. R. Ulrich, Eds., Mater. Res. Soc. Symp. Proc., 180, 123 (1990)
54.D. S. Kim and R. Y. Lee, “Synthesis and Photoluminescence properties of (Y,Gd)BO3: Eu phosphor prepared by ultrasonic spray”, Journal of Material Science, 35, 4777 (2000)
55.T. T. Kodas and M. J. Hampden-Smith, Aerosol Processing of Materials, WIELY-VCH, New York (1999)
56.Y. C. Kang, S. B. Park, and Y. W. Kang, “Preparation of High Surface Area Nanophase Particles by Low Pressure Spray Pyrolysis”, Nanostructured Materials, 5, 777 (1995)
57.Y. C. Kang, S. B. Park and S. W. Kwon, “Preparation of Submicron Size Gamma Lithium Aluminate Particles from the Mixture of Alumina Sol and Lithium Salt by Ultrasonic Spray Pyrolysis”, Journal of Colloid and Interface Science, 182, 59 (1996)
58.Y. C. Kang, J. S. Choi and S. B. Park, “Preparation of High Surface Area MgAl2O4 Particles from Colloidal Solution using Filter Expansion Aerosol Generator”, Journal of the European Ceramic Society”, 18, 641 (1998)
59.M. Kagawa, M. Suzuki, Y. Mizoguchi, T. Hirai, and Y. Syono, “Gas-Phase Synthesis of Ultrafine Particles and Thin Films of Y-Al-O by the Spray-ICP Technique”, Journal of Aerosol Science, 24, 349 (1993)
60.Y. C. Kang and S. B. Park, “Preparation of Zinc Oxide-Dispersed Silver Particles by Spray Pyrolysis of Colloidal Solution”, Materials Letters, 40, 129, (1999)
61.Y. C. Kang, H. S. Roh, S. B. Park, and H. D. Park, “High Luminescence Y2O3: Eu Phosphor Particles Prepared Particles Prepared by Modified Spray Pyrolysis”, Journal of Materials Science Letters, 21, 1027 (2002)
62.Y. C. Kang and S. B. Park, “Morphology Control of BaMgAl10O17:Eu Particles: The Use of Colloidal Solution Obtained from Alkoxide Precursor in Spray Pyrolysis”, Journal of The Electrochemical Society, 147, 799 (2000)
63.Y. C. Kang, H. S. Roh, and S. B. Park, “Preparation of Y2O3:Eu Phosphor Particles of Filled Morphology at High Precursor Concentrations by Spray Pyrolysis”, Advanced Materials, 12, 451 (2000)
64.Y. C. Kang, S. B. Park, I. W. Lenggoro, and K. Okuyama, “Preparation of nonaggregated Y2O3:Eu phosphor particles by spray pyrolysis method”, Journal of Materials Research, 14, 2611, (1999)
65.Y. C. Kang and H. D. Park, “Brightness and Decay Time of Zn2SiO4:Mn Phosphor Particles with Spherical Shape and Fine Size” Applied Physics A: Materials Science & Processing, 77, 529 (2003)
66.Y. C. Kang, M. A. Lim, H. D. Park and M. Han, “Ba 2+ Co-doped Zn2SiO4:Mn Phosphor Particles Prepared by Spray Pyrolysis Method”, Journal of The Electrochemical Society, 150, H7 (2003)
67.H. S. Kang, Y. C. Kang, H. D. Park, and Y. G. Shul, “Morphology of Particles Prepared by Spray Pyrolysis from Organic Precursor Solution”, Materials Letters, 57, 1288 (2003)
68.A. Khaleel and R. M. Richards, Ceramics, Chapter 4 in Nanoscale Materials in Chemistry , K. J Klabunde (Eds.), John Wiley & Sons, New York (2001)
69.A. H. Lefebvre, Atomization and Sprays, Taylor & Francis, U.K. (1989)
70.K. T. Lee, A. Sathyagal, P. W. Carr, and A. V. McCormick, “Synthesis of Zirconia Colloids from Aqueous Salt Solutions”, Journal of the American Ceramic Society, 82, 338 (1999)
71.J. H. Lee and S. J. Park, “Preparation of Spherical TiO2/SnO2 Powders by Ultrasonic Spray Pyrolysis and Its Spinodal Decomposition”, Journal of Materials Science: Materials in Electronics, 4 , 254 (1993)
72.J. H. Lee and S. J. Park, “ Preparation of Spherical SnO2 Powders by Ultrasonic Spray Pyrolysis”, Journal of the American Ceramic Society, 76, 777 (1993)
73.R. J. Lang, “Ultrasonic atomization of liquids”, Journal of the Acoustical Society of America, 34, 6 (1962)
74.T. Q. Liu, O. Sakurai, N. Mizutani, and M. Kato, “Preparation of Spherical Fine ZnO Particles by the Spray Pyrolysis Method Using Ultrasonic Atomization Techniques”, Journal of Materials Science, 21, 3698 (1986)
75.M. Luce, N. Herlin, E. Musset and M. Cauchetier, “Laser Synthesis of Nanometric Silica Powders”, Nanostructured Materials, 4, 403 (1994)
76.J. H. Lee, K. Y. Jung and S. B. Park, “Modification of Titania Particles by Ultrasonic Spray Pyrolysis of Colloid”, Journal of Materials Science, 34, 4089 (1999)
77.H. J. Lee, S. K. Hong, D. S. Jung, and Y. C. Kang, “Y3Al5O12:Tb Phosphor Particles Prepared by Spray Pyrolysis from Spray Solution with Polymeric Precursors and Ammonium Fluoride Flux”, Materials Letters, 59, 2383 (2005)
78.G. L. Messing, S. C. Zhang, and G.V. Jayanthi, “Ceramic Powder Synthesis by Spray Pyrolysis”, Journal of the American Ceramic Society, 76, 2707 (1993)
79.K. Matsui, H. Suzuki, and M. Ohgai, “Raman Spectroscopic Studies on the Formation Mechanism of Hydrous-Zirconia Fine Particles”, Journal of the American Ceramic Society, 78, 146 (1995)
80.K. Matsui and M. Ohgai, “Formation Mechanism of Hydrous-Zirconia Particles Produced by Hydrolysis of ZrOCl2 Solutions”, Journal of the American Ceramic Society, 80, 1949 (1997)
81.K. Matsui and M. Ohgai, “Formation Mechanism of Hydrous-Zirconia Particles Produced by Hydrolysis of ZrOCl2 Solutions: II”, Journal of the American Ceramic Society, 83, 1386 (2000)
82.K. Matsui and M. Ohgai, “Formation Mechanism of Hydrous Zirconia Particles Produced by the Hydrolysis of ZrOCl2 Solutions: III, Kinetics Study for the Nucleation and Crystal-Growth Processes of Primary Particles, Journal of the American Ceramic Society, 84, 2303 (2001)
83.K. Matsui and M. Ohgai, “Formation Mechanism of Hydrous Zirconia Particles Produced by the Hydrolysis of ZrOCl2 Solutions: IV, Effects of ZrOCl2 Concentration and Reaction Temperature, 85, 545 (2002)
84.K. A. Moore, J. Cesarano III, D. M. Smith and T. T. Kodas, “Synthesis of Submicrometer Mullite Powder via High-Temperature Aerosol Decomposition”, Journal of the American Ceramic Society, 75, 213 (1992)
85.B. Milošević and D. P. Uskoković, “Synthesis of BaTiO3 and ZnO varistor precursor powders by reaction spray pyrolysis”, Materials Science and Engineering, A168, 249 (1993)
86.S. Melis, M. Verduyn, G. Storti, M. Morbidelli, and J. Baldyga, “Effect of fluid motion on the aggregation of small particles subject to interaction forces”, AIChE Journal, 45, 1383 (1999).
87.O. B. Milošević, B. Jordović, and D. P. Uskoković, “Preparation of Fine Spherical ZnO Powders by an Ultrasonic Spray Pyrolysis Method”, Materials Letters, 19, 165 (1994)
88.O. B. Milošević, M. K. Mirković, and D. P. Uskoković, “Characteristics and Formation Mechanism of BaTiO3 Powders Prepared by Twin-Fluid and Ultrasonic Spray-Pyrolysis Methods”, Journal of the American Ceramic Society, 79, 1720 (1996)
89.O. Milošević, D. Uskokvić, L. J. Karanović, M. Tomaševic-Čanović, and M. Trontelj, “Synthesis of ZnO-based Varistor Precursor Powders by Means of the Reaction Spray Process”, Journal of Materials Science, 28, 5211 (1993)
90.P. Murugavel, M. Kalaiselvam, A. R. Raju and C. N. R. Rao, “Sub-Micrometre Spherical Particles of TiO2, ZrO2 and PZT by Nebulized Spray Pyrolysis of Metal–Organic Precursors”, Journal of Materials Chemistry, 7, 1433 (1997)
91.N. Q. Minh, “Ceramic Fuel Cell”, Journal of the American Ceramic Society, 76, 563 (1993)
92.G. M. Muha and P. A. Vaughan, “Structure of the Complex Ion in Aqueous Solution of Zirconyl and Hafnyl Oxyhalide”, The Journal of Chemical Physics, 33, 194 (1960)
93.S. M. Mahurin and M. D. Cheng, “Generating nanoscale aggregates from colloidal nanoparticles by various aerosol spray techniques”, Nanotoxicology, 1, 130 (2007)
94.W. Nimmo, N. J. Ali, R. Bryson, C. Calvert, and S. J. Milne, “Particle Formation During Spray Pyrolysis of Lead Zirconate Titanate”, Journal of the American Ceramic Society, 88, 839 (2005)
95.J. Nawrocki, M. Rigney, A. McCormick, and P. W. Carr, “Chemistry of zirconia and its use in chromatography”, Journal of Chromatography A, 657, 229 (1993)
96.J. Nawrocki, C. J. Dunlap, P. W. Carr, and J. A. Blackwell, “New Materials for Biotechnology: Chromatographic Stationary Phases Based on Zirconia”, Biotechnology Progress, 10, 561 (1994)
97.Nedeljković, Z. V. Šaponjić, Z. Rakočević, V. Jokanović , and D. P. Uskoković, “Ultrasonic Spray Pyrolysis of TiO2 Nanoparticles”, Nanostructured Materials, 9, 125 (1997)
98.J. Ortega, T. T. Kodas, S. Chadda, D. M. Smith, M. Ciftcioglu and J. E. Brennan, “Formation of Dense Ba0.86Ca0.14Ti03 Particles by Aerosol Decomposition”, Chemistry of Materials, 3, 746 (1991)
99.J. Ortega and T. T. Kodas, “Control of Particle Morphology During Multicomponent Metal Oxide Powder Generation by Spray Pyrolysis”, Journal of Aerosol Science, 23, Suppl. 1, s253 (1992)
100.K. Ohtsuka, Y. Hayashi, and M. Suda, “Microporous ZrO2-Pillared Clays Derived from Three Kinds of Zr Polynuclear Ionic Species”, Chemistry of Materials, 5, 1823 (1993)
101.K. Ohshima, K. Tsuto, K. Okuyama, and N. Tohge, “Preparation of ZnO-TiO2 Composite Fine Particles Using the Ultrasonic Spray Pyrolysis Method and Their Characteristics on Ultraviolet Cutoff”, Aerosol Science and Technology, 19, 468 (1993)
102.K. Okada, A. Tabaka, S. Hayashi, and N. Otsuka, “Preparation of Al2O3 Powders From Various Aluminum Salts by the Spray Pyrolysis Method”, Journal of Materials Science Letters, 12, 854 (1993)
103.O. B. Milošević and D. P. Uskoković, “Synthesis of BaTiO3 and ZnO varistor precursor powders by reaction spray pyrolysis”, Materials Science and Engineering, A168, 249 (1993)
104.P. Odier, B. Dubois, C. Clinard, H. Stroumbos, and P. Monod, “Processing of Ceramic Powders by the Spray Pyrolysis Method; Influence of the Precursors. Examples of Zirconia and YBa2Cu3O7-x”, pp. 75-89 in Ceramic Transactions, Vol. 12, Ceramic Powder Science III, Edited by G. L. Messing, S. Hirano, and H. Hausner. American Ceramic Society, Westerville, OH (1990)
105.C. Piconi and G. Maccauro, “Zirconia as a ceramic biomaterial”, Biomaterials, 20, 1 (1999)
106.T. C. Pluym, Q.H. Powell, A. S. Gurav, T.L. Ward, T. T. Kodas, L. M. Wang and H. D. Glicksman, “Solid Silver Particle Production by Spray Pyrolysis”, Journal of Aerosol Science, 24, 383 (1993)
107.H. S. Roh, Y. C. Kang, and S. B. Park, “Morphology and Luminescence of (GdY)2O3:Eu Particles Prepared by Colloidal Seed-Assisted Spray Pyrolysis”, Journal of Colloid and Interface Science, 228, 195 (2000)
108.T. A. Ring, Fundamentals of Ceramic Powder Processing and Synthesis, Academic Press, San Diego (1995)
109.A. Singhal, L. M. Toth, J. S. Lin, and K. Affholter, “Zirconium (IV) Tetramer/Octamer Hydrolysis Equilibrium in Aqueous Hydrochloric Acid Solution”, Journal of the American Chemical Society, 118, 11529 (1996)
110.A. Singhal, L. M. Toth, G. Beaucage, J. S. Lin, and J. Peterso, “Growth and Structure of Zirconium Hydrous Polymers in Aqueous Solutions”, Journal of Colloidal and Interface Science, 194, 470 (1997)
111.A. Singhal, G. Beaucage, M. T. Harris, L. M. Toth, K. D. Keefer, J. S. Lin, Michael Z. –C. Hu, and J. R. Peterson, “Structure and Growth Kinetics of Zirconium Hydrous Polymers in Organic Solutions”, Journal of Non-Crystalline Solids, 246, 197 (1999)
112.Y. Senzaki. M. J. Hampden-Smith, T. T. Kodas, and J. W. Hussler, “Preparation of Metal Ruthenates by Spray Pyrolysis”, Journal of the American Ceramic Society, 78, 2977 (1995)
113.T. Suzuki, K. Itatani, M. Aizawa, F. S. Howell and A. Kishioka, “Sinterability of Spinel (MgAl2O4)-Zirconia Composite Powder Prepared by Double Nozzle Ultrasonic Spray Pyrolysis”, Journal of the European Ceramic Society, 16, 1171 (1996)
114.W. H. Suh and K. S. Suslick, “Magnetic and Porous Nanospheres from Ultrasonic Spray Pyrolysis”, Journal of the American Chemical Society, 127, 12007 (2005)
115.E. C. Subbarao EC. Zirconia-an overview. In: A. H. Heuer and L. W. Hobbs editors. Advances in ceramics, 3. Science and Technology of Zirconia. Amsterdam: Elsevier, 1. (1981)
116.L. Sun, M. J. Annen, F. Lorenzano-Porras, C. P. Francisco, and A. V. McCormick, “Synthesis of porous zirconia spheres for HPLC by polymerization-induced colloid aggregation (PICA)”, Journal of the Colloid and Interface Science, 163,464 (1994)
117.M. Smoluchowski, “Study of a mathematical theory of the coagulation kinetics of colloidal solutions”, Zeitschrift für physikalische Chemie, 92, 129 (1917)
118.U. Schubert and N. Hüsing, Synthesis of Inorganic Materials, Willy-VCH, Weinheim (2005)
119.L. M. Toth, J. S. Lin, and L. K. Felker, “Small-Angle X-ray Scattering from Zirconium (IV) Hydrous Tetramers”, The journal of Physical Chemistry, 95, 3106 (1991)
120.J. J. Tulock and G. J. Blanchard, “Investigating Hydrolytic Polymerization of Aqueous Zirconium Ions Using the Fluorescent Probe Pyrenecarboxylic Acid”, The journal of Physical Chemistry B, 106, 3568 (2002)
121.S. C. Tjong and H. Chen, “Nanocrystalline Materials and Coating”, Materials Science and Engineering R, 45, 1-88 (2004)
122.J. Wang and R. Stevens, “Zirconia Toughened Alumina Ceramic”, Journal of Materials Science, 24, 3421 (1989)
123.W. Weppner, “Tetragonal zirconia polycrystals-a high performance solid oxygen ion conductor”, Solid State Ionic, 52, 15 (1992)
124.M. Yoshimura and S. Somiya, “Hydrothermal synthesis of crystallized Nano-Particles of Rare Earth-Doped Zirconia and Hafnia”, Materials Chemistry and Physics, 61, 1 (1999)
125.S. C. Zhang, G. L. Messing and M. Borden, “Synthesis of Solid, Spherical Zirconia Particles by Spray Pyrolysis”, Journal of the American Ceramic Society, 73, 61 (1990)
126.Y. C. Zhang, N. Hidekazu, M. Junichiro, and T. Hiroaki, “Detection of carbon monoxide by using zirconia oxygen sensor”, Solid State Ionic, 79, 344 (1995)
127.M. R. Zachariah and S. Huzarewicz, “Aerosol Processing of YBaCuO Superconductors in a Flame Reactor”, Journal of Materials Research, 6, 264 (1991)
128.M. R. Zachariah and S. Huzarewicz, “Flame Synthesis of high T(c) Superconductors”, Combustion and Flame, 87, 100 (1991)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top