跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/08/04 03:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:莊家儀
研究生(外文):Chia-I Juang
論文名稱:葡萄糖氧化酶於強鹼性陰離子樹脂上之吸附與脫附
論文名稱(外文):Adsorption and Desorption of Glucose Oxidaseonto Strong-Base Anion Resins
指導教授:莊瑞鑫莊瑞鑫引用關係
指導教授(外文):Ruey-Shin Juang
學位類別:碩士
校院名稱:元智大學
系所名稱:化學工程與材料科學學系
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:70
中文關鍵詞:葡萄糖氧化酶陰離子型交換樹脂吸附
外文關鍵詞:Glucose Oxidaseion-exchange resinadsorption
相關次數:
  • 被引用被引用:1
  • 點閱點閱:227
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文嘗試以IRA-900樹脂吸附單成分酵素溶液,實驗所使用的酵素為葡萄糖氧化酶(GOx)。而本研究共分為利用不同樹脂種類及其粒徑大小與不同緩衝液濃度、鹽類濃度和溫度,探討吸附最佳化條件、吸附熱力學,以及脫附條件之探討。
由實驗結果得知,當GOx溶於磷酸緩衝溶液中時,其pH值大於等電點,GOx帶負電。故強陰離子型交換樹脂IRA-900具有最佳之吸附效果;而在相同樹脂克數下,當樹脂粒徑越小時,其吸附量越高;隨著緩衝液濃度升高,GOx之吸附效果降低;隨著pH值、溫度升高,GOx之吸附效果隨之增高,但是活性隨著溫度上升而降低。由實驗結果得知,在使用粒徑為74μm - 250μm樹脂,吸附緩衝液為0.05 M、pH 7.8之磷酸緩衝液,並在25oC恆溫吸附下會有最佳吸附率和活性。
以Semi-reciprocal plot線性迴歸分析,確定樹脂吸附GOx符合Langmuir isothermal model,且酵素在吸附過程中的熱力學變化,均為吸熱反應。
在脫附實驗方面,使用醋酸緩衝溶液當作脫附液會造成酵素的失活,故使用磷酸緩衝溶液當作脫附液;在其條件下,增加脫附緩衝液濃度以及讓其pH值越趨近於等電點,脫附量漸增;當添加KCl濃度增高有助於酵素脫附率之提升,在1.0M KCl的脫附緩衝液濃度下,脫附率趨近100%。
In this study, the application of ion-exchange resin Amberlite IRA-900 as ion-exchange absorbent glucose oxidase (GOx). The effects of adsorption buffers concentration, pH, temperature and salt concentration on single enzyme adsorption and thermodynamics were investigated. Finally, it was discussed with desorption conditions.
For enzyme, the amount of adsorption was higher at small particle size of ion-exchange resin. The results show that the amount of enzyme adsorbed increases as the adsorption buffer concentration, temperature, pH value and salt concentration increase. In addition, the adsorption isotherms well fitted by the Langmuir isothetrmal model from the semi-reciprocal plot analysis.
For desorption condition, the amount of desorption was higher at low pH values. The results show the amount of enzyme desorbed increases as desorption buffer concentration and salt concentration increase.
摘要 I
Abstract II
目錄 III
表目錄 VI
圖目錄 VII
符號說明 IX
第一章緒論 1
1.1 研究動機與目的 1
1.2 葡萄糖氧化酶簡介 2
1.2.1 葡萄糖氧化酶醱酵培養 3
1.2.2葡萄糖氧化酶基本特性與結構 4
1.2.3葡萄糖氧化酶的應用 7
1.3 蛋白質層析純化技術 8
1.3.1 蛋白質層析技術 8
1.3.2 膠體過濾層析 9
1.3.3 親和層析法 10
1.3.4 疏水性層析 11
1.3.5 離子交換層析 12
1.4 生物燃料電池 14
1.4.1 生物燃料電池簡介 14
1.4.2 生物燃料電池優點 14
1.4.3 生物燃料電池分類 15
1.4.3.1 依照使用方法之催化型式分類 15
1.4.3.2 依電子轉移方式分類 16
1.5 葡萄糖氧化酶和生物燃料電池 16
第二章 吸附基礎理論與文獻回顧 17
2.1 吸附基礎理論 17
2.1.1物理吸附 17
2.1.2 化學吸附 17
2.1.3交換吸附 18
2.2等溫吸附模式 19
2.2.1 Langmuir等溫吸附模式 19
2.3 影響吸附因素 20
2.3.1 吸附劑性質 20
2.3.2 蛋白質結構及穩定度 22
2.3.3 pH效應 23
2.3.4 溫度效應 24
2.3.5 鹽類效應 25
2.4 吸附熱力學探討 26
第三章 材料與實驗方法 28
3.1實驗藥品與儀器 28
3.1.1藥品部分 28
3.1.2儀器部分 29
3.2實驗步驟及分析方法 29
3.2.1樹脂前處理 29
3.2.2酵素吸附動力實驗 30
3.2.3酵素吸附實驗 31
3.2.4添加鹽類對酵素恆溫吸附之影響 32
3.2.5酵素脫附動力實驗 33
3.2.6酵素脫附實驗 33
3.2.7添加鹽類對酵素恆溫脫附之影響 34
3.3分析方法 35
3.3.1酵素之濃度分析(enzyme assay) 35
3.3.2濃度分析檢量線 35
3.3.3活性分析 36
第四章結果與討論 38
4.1 不同樹脂種類及粒徑對酵素吸附量之影響 38
4.1.1 不同樹脂種類對酵素吸附量影響 38
4.1.2 不同樹脂粒徑對GOx吸附量影響 42
4.2 酵素等溫吸附探討 45
4.2.1 緩衝液之pH值以及濃度對GOx吸附量影響 45
4.2.2鹽類效應對GOx吸附量影響 47
4.2.3溫度效應對GOx吸附量影響 49
4.2.4 Langmuir吸附參數分析 51
4.2.5 Langmuir吸附參數分析 54
4.3 GOx脫附條件的探討 56
4.3.1緩衝液之pH值以及濃度對GOx脫附量影響 57
4.3.2鹽類效應對GOx脫附量影響 59
第五章 結論 62
參考文獻 64
自述 70
Aboudzadeh, M. R.; Aboudzadeh, N.; Zhu J.; Wu B., “Binary protein adsorption to DEAE sepharose FF”, Korean J. Chem. Eng., 24, 641-647 (2007)
Alkan, M.; Özkan, D.; Doğan, M.; Arslan, O., “Surface properties of bovine serum albumin-adsorbed oxides: adsorption, adsorption kinetics and electrokinetic properties”, Microporous and Mesoporous Meterials, 96, 331-340 (2006)
Arıca, M. Y.; Yılmaz, M.; Yalcın, E.; Bayramoğlu, G., “Surface properties of Reactive Yellow 2 immobilised pHEMA and HEMA/chitosan membranes: characterisation of their selectivity to different proteins”, J. Membr. Sci., 240, 167-178 (2004)
Bayramoğlu, G.; Yakup, A., “Procion Green H-4G immobilized on a new IPN hydrogel membrane composed of poly(2-hydroxyethylmethacrylate)/chitosan: preparation and its application to the adsorption of lysozyme”, Colloids and Surface A: Physicochem. Eng. Aspects, 202, 41–52 (2002)
Bayramoğlu, G.; Meltem, Y.; Yakup, A., “Affinity dye-ligand poly( hydroxyethyl methacrylate )chitosan composite membrane for adsorption lysozyme and kinetic properties”, Biochemical Engineering J., 13, 35-42 (2003)
Bentley, R., “Academic press”, Methods in Enzymology, 86(1996)
Bonomo, R. C.F.; Saraiva, S. H., “Multicomponent adsorption of whey proteins by ion exchanger”, Braz. J. Food Technol., 6, 323-326 (2003)
Bonomo, R. C.F.; Luis, A. M.; Jane, S.R. C.; Rafael, C.I. F.; Luis, H. M.; Val´eria P.R. M., “Hydrophobic interaction adsorption of whey proteins: Effect of temperature and salt concentration and thermodynamic analysis”, J. Chromatogr. B, 844, 6-14 (2006)
Bowen, W. R.; Pan, L.C., ”Ion Exchange of Bovine Serum Albumin at a Natural Organic Anion Exchanger: Thermodynamics and Energetics”, J. Colloid Interface Sci., 189, 328-336 (1997)
Braeken, L.; Boussu, K.; Bruggen, B.V.E.; Vandecasteele, C., “Modeling of the adsorption of organic compounds on polymeric nanofiltration membranes in solutions containing two compounds”, ChemPhys. Chem., 6, 1606-1612 (2005)
Bright, H.; Appleby, M., “The pH Dependence of the Individual Step in the glucose oxidase Reaction”, J. Biol Chem, 244, 2365(1969)
Butler, J.A.V.; Ockrent, C., “Studies in electrocapillarity. Part III: The surface tensions of solutions containing two surface-active solutes”, Phys. Chem., 34, 2841-2859 (1930)
Cano, T.; Offringa, N.; Willson, C. R., “The effectiveness of three multi-component binding models in describing the binary competitive equilibrium adsorption of two cytochrome b5 mutants”, J. Chromatogr. A, 1144, 197-202 (2007)
Carson, M., “Ribbons 2.0”, J. Appl. Cryst., 24, 958-996(1991)
Causserand, C.; Yilmaz K.; Pierre, A., “Protein fraction using selective adsorption on clay surface before filtration“, J. Membr. Sci., 189, 165-181 (2001)
Chaouk, H.; Hearn, M. T. W., “Examination of the protein binding behaviour of immobilised copper (II)-2,6-diaminomethylpyridine and its application in the immobilised metal ion affinity chromatographic separation of several human serum proteins”, J. Biochem. Biophys. Methods, 39, 161-177 (1999)
Chen, J.; Sun, Y., “Modeling of the salt effects on hydrophobic adsorption equilibrium of protein”, J. of Chromatogr. A, 992, 29-40 (2003)
Doğan, M.; Alkan, M., “Adsorption kinetics of methyl violet onto perlite”, Chemosphere, 50, 517-528 (2003)
Fernandez, M.A.; Carta, G., “Characterization of protein adsorption by composite silica-polyacrylamide gel anion exchangers I. Equilibrium and mass transfer in agitated contactors”, J. Chromatogr. A, 746, 169-183 (1996)
Finette, G. M. S.; Mao, Q. M.; Hearn, M. T. W., “Comparative studies on the isothermal characteristics of proteins adsorbed under batch equilibrium conditions to ion-exchange, immobilized metal-ion affinity and dye affinity matrices with different ionic-strength and temperature conditions”, J. chromatogr. A, 763, 71-90 (1997a)
Finette, G. M. S.; Baharin, B. S.; Mao, Q. M.; Hearn, M. T. W., “Adsorption behavior of multicomponent protein mixtures containing ?1-proteinase inhibitor with the anion exchanger, 2-(diethylamino)ethyl-Spherodex”, Biotechnol. Prog., 13, 265-275 (1997b)
Galisteo, F.; Norde, W., “Adsorption of lysozyme and ?-lactabumin on poly(styrenesulphonate) lattices 1. Adsorption and desorption behaviour”, Colloids and Surfaces B: Biointerfaces, 4, 375-387 (1995)
Gao D.; Lin, D. Q.; Yao, S. J, “Protein adsorption kinetics of mixed-mode adsorbent with benzylamine as functional ligand”, Chem. Eng. Sci., 61, 7260-7268 (2006)
Gitlesen, T.; Bauer, M.; Adlercreutz, P., “Adsorption of lipase on polypropylene powder”, Biochimica et Biophysica Acta, 1345, 188-196 (1997)
Goheen, S. C.; Gibbins, B. M.. “Protein losses in ion-exchange and hydrophobic interaction high- performance liquid chromatography”, J. Chromatography, 890, 73-80(2000)
Goodsell DS.,”Glucose oxidase. Molecule of the month.”, Protein Data Bank(2006)
Hahn, R.; Schulz, P. M.; Schaupp, C.; Jungbauer, A., “Bovine whey fractionation based on cation-exchange chromatography”, J. Chromatogr. A, 795, 277-287 (1998)
Ho, Y. S.; G. Mckay, “Correlative biosorption equilibria model for a binary batch system”, Chem. Eng. Sci., 55, 817-825 (2000)
Huang, H. M.; Lin, F. Y; Chen, W. Y; Ruaany, R. C. ,“Isothermal Titration Microcalorimetric Studies of the Effect of Temperature on Hydrophobic Interaction between Proteins and Hydrophobic Adsorbents”, J. Colloid Interface Sci. 229, 600-606 (2000)
Ikeda, T.;Kano, K., “An electrochemical approach to the studies of biological redox reactions and their applications to biosensors, bioreactors, and biofuel cells”, J. Bioscience and Bioengineering, 92, 9-18 (2001)
Jain, J.S.; Snoeyink, V. L., “Adsorption from bisolute systems on active carbon”, J. WPCF, 45,2463-2479 (1973)
Jiang, W.; Hearn, M.T.W., “Protein interaction with immobilized metal ion affinity ligands under high ionic strength conditions”, Analytical Biochemistry, 242, 45-54 (1996)
John, W.; Sons, Inc., “Immobilization of Glucose Oxidase on MacroreticularIon Exchange Resins ”, Biotechnology and Bioengineering, 611-617 (1978)
Juang R. S.; Wu F. C.; Tseng R. L., “Mechanism of adsorption of dyes and phenols from water using activated carbon prepared from plum kernels”, J. Colloid Interface Sci., 227, 437-444 (2000)
Katz, E.; Filanovsky, B.; Willner, I., “A biofuel cell based on two immiscible solvents and glucose oxidase and microperoxidase-11 monolayer-functionalized electrodes”, New J. Chemistry, 23, 481-487 (1999)
Larsericsdotter, H.; Oscarsson, S.; Buijs J.,“Thermodynamic analysis of proteins adsorption on silica particles: electrostatic effect” J. Colloid Interface Sci., 237, 980-103 (2001)
Lin, F. Y; Chen, C.-S; Chen, W.-Y.; Yamamoto S., “Microcalorimetric studies of the interaction mechanisms between proteins and Q-Sepharose at pH near the isoelectric point (pI ) Effects of NaCl concentration, pH value, and temperature”, J. Chromatogr. A, 912, 281-289 (2001)
Marijn, van der Veen; Norde, W.; Stuart, M. C., “Electrostatic interactions in protein adsorption probed by comparing lysozyme and succinylated lysozyme”, Colloids and Surfaces B: Biointerfaces, 35, 33-40 (2004)
Mckay, G.; Duri, B. A., “Prediction of multicomponent adsorption euilibrium data using empirical correlations”, Chem. Eng. J.,41, 9-23 (1989)
Nakamura, S.; Ogara, Y., “Mode of inhibition of glucose oxidase by metal ions”, J. Biochem, 69, 439 (1968)
Nakanishi, K.; Sakiyama, T.; Imamura, K., “Review: On the adsorption of proteins on solid surfaces, a common but very complicated phenomenon”, J. Biosci. Bioeng., 91, 233-244 (2001)
Noroozi, B.; G.A. Sorial; H. Bahrami; M. Arami, “Adsorption of binary mixtures of cationic dyes”, Dyes and Pigments, 74, 784-791 (2008)
Rojas, G. E.E.; J. S. dos Reis Coimbra, Minim, L. A.; Saraiva, S. H.; C. A. Sodr´e da Silva, “Hydrophobic interaction adsorption of hen egg white proteins albumin, conalbumin, and lysozyme”, J. Chromatogr. B, 840, 85-93 (2006)
Shukla, A. K;, Suresh, P.; Berchmans, S.; Rajendran, A., “Biological fuel cells and their applications”, Curr. Sci., 87, 4, 455-468 (2004)
Takaaki, A.; Norde, W., “The behavior of some model proteins at solid-liquid interfaces 1: adsorption from single protein solutions”, Colloids and Surfaces, 51, 1-15 (1990)
Tao, Z.; Yu, C.; Zhang, H.; He, Y., “Comparative study of adsorption isotherms of BSA on DEAE- and CM-dextran-type ion exchanger”, Reactive & Functional Polymers, 32, 257-262 (1997)
Tongta, A.; Liapis, A.I.; Siehr, D.J., “Equilibrium and kinetic parameters of the adsorption of ?-chymotrysinogen A onto hydrophobic porous adsorbent particles”, J. Chromatogr. A, 686, 21-29 (1994)
Tsuge, H.; Natasaki, O.; Ohashi, “Purification, properties and Molecular Features of Glucose Oxidase from Aspergillus niger”, J. Biochem, 78, 835(1975)
Vladimir, H.; Jos, B., “Protein adsorption on solid surfaces”, Current Opinion in Biotechnology, 7, 72-77 (1996)
Yao, S. J.; Guan, Y. X.; Yu,L. H., “Adsorption Performance of Proteins to CM Sepharose FF and DEAE Sepharose FF Adsorbents”, Korean J. Chem. Eng., 20, 93-98 (2003)
Yoon, J.-Y.; Lee, J.-H.; Kim, J.-H.; Kim, W.-S., “Separation of serum proteins with uncoupled microsphere particles in a stirred cell”, Colloids and Surfaces. B, Biointerfaces, 10, 365-377 ( 1998 )
Yang, C. M.; Tsao, G.T.; “Packed-bed adsorption theories and their applications to affinity chromatography”, Advances in Biochem. Eng./Biotech., 25, 1-18 (1982)
Yuhashi, N.; Tomiyama, M.; Okuda, J.; Igarashi, S.; Ikebukuro, K.; Sode, K., “Development of a novel glucose enzyme fuel cell system employing protein engineered PQQ glucose dehydrogenase”, Biosensors and Bioelectronics, 20, 2145-2150(2005)
王大成,「蛋白質工程」,化學工業出版社,2002
方瓊儀,碩士論文,「利用微卡計對於蛋白質與離子交換樹脂觸手間親疏水作用力的研究」,2003
李校堃,袁輝,「藥物蛋白質分離純化技術」,化學工業出版社,2005
李藝,李鎔時,「蛋白質在固體表面吸附的研究進展」,高分子通報,第3期,41-49,2007
余菀婷,碩士論文,「操作條件對微生物燃料電池性能之影響」,台灣海洋大學,2006
何炳林,黃文強,「離子交換與樹脂吸附」,上海科技教育出版社,1995
周並鳳,張先恩,劉虹,「黑曲霉葡萄糖氧化酶基因的克隆及其在酵母中的高效表現」,化學工程學報,第17期,400-405,2001
林自威,碩士論文,「S. cerevisiae與 P. pastoris高密度發酵生產葡萄糖氧化酶(glucose oxidase)及其酵素特性比較」,台灣科技大學,2004
姚善涇,關怡新,俞麗華,「蛋白質在離子交換介質中的動態吸附性能」,高校化工學報,第16卷第6期,2002
翁小喬,碩士論文,「以螯合樹脂Amberlite IRC-748分離牛血紅素與牛血清蛋白混和物」,元智大學,2008
黃祥鳴,博士論文,「利用微卡計探討疏水作用對於蛋白質與吸附基材之交互作用機制以及蛋白質溶液行為之影響」,中央大學,2002
張家靖,「蛋白質摺疊與聚集」,物理雙月刊,第28卷第4期,2006
莊榮輝,台灣大學生化科技系生物化學課程講義,2006
嚴希康,「生化分離工程」,化學工業出版社,2003
蕭巧琳,碩士論文,「溶菌酵素在批式及支撐式液膜程序中之逆微胞萃取」,元智大學,2005
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top