跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2024/12/04 18:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:潘承煜
研究生(外文):Cheng-Yu Pan
論文名稱:氧化鋯溶膠洗積甲醇蒸氣重組催化劑於微流道反應器之研究
論文名稱(外文):Washcoating Copper Catalyst with Zirconia Sol onto Microchannel Reactor for Steam Reforming of Methanol
指導教授:林錕松
指導教授(外文):Kuen-Song Lin
學位類別:碩士
校院名稱:元智大學
系所名稱:化學工程與材料科學學系
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:146
中文關鍵詞:氧化鋯溶膠洗積銅鋅鋁催化劑微流道反應器甲醇蒸氣重組反應燃料電池
外文關鍵詞:zirconia solwashcoatingCu/ZnO/Al2O3 catalystmicrochannel reactorsteam reforming of methanolfuel cell
相關次數:
  • 被引用被引用:2
  • 點閱點閱:280
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
甲醇蒸氣重組反應是一個可應用於燃料電池上的產氫反應,而本研究乃發展以此反應為基礎的微流道反應器。與填充床相比,微流道反應器有低壓降、不易爆炸、快速的熱傳與質傳等優點。具有反應活性的流道片是此反應器的核心,文獻上常以氧化物溶膠當黏著劑與催化劑粉末混合成漿料後,洗積於流道片上而製得。
本研究試著以市售氧化鋯溶膠作為黏著劑,與銅鋅鋁催化劑混合製成漿料後,洗積於微流道片上使其具催化反應性。之後,以超音波震盪時的重量損失率來評估漿料與基材間的附著性;催化活性則以甲醇蒸氣重組反應時的甲醇轉化率為95%所需的溫度(T95)來評估。附著實驗發現當漿料的pH ≦ 5時,可獲得較低的重量損失率,但隨著鹼度增加損失率亦隨之增加。黏度測試顯示,損失率增加的原因是漿料在製作過程中膠化所導致。因此,漿料必須維持在酸性以維持其附著性。但是在pH ≦ 5的情況下,催化劑會明顯地被酸溶解,使得該洗積層約在300oC時才能達到95%的甲醇轉化率。
為了提升甲醇蒸氣重組反應的反應性,本研究嘗試以不含酸的醇氧鋯溶液作為黏著劑並製作成微流道反應器。觸媒活性測試顯示其反應性確實比利用市售氧化鋯溶膠的來得高,因此T95明顯地降低至240oC。
Steam reforming of methanol (SRM) is a reaction which may produce hydrogen for fuel cell application. In this study, micro-channel reactors (MCR) for SRM reaction are under developing. The micro-channel reactor generally has advantages of low pressure drop, low probability of explosion, and fast in thermal and mass transfer. The heart of micro-channel reactors is active plates which were fabricated in the literature by washcoating powders of active catalyst onto stainless steel plates (SSP) with metal oxide sols.
The present study intended to mix SRM catalyst (Cu/ZnO/Al2O3) with a commercial ZrO2 sol into slurries and brush them onto SSP for active plates. The binding strength of slurries on SSP was estimated by fraction of weight loss (FL) in an ultrasonic vibration test. The performance of assembles MCR was estimated from temperature required for 95% methanol conversion (T95) in SRM reaction. Experimentally, FL was found low at pH ≦ 5 but increased drastically on increasing the basicity of prepared slurries. Viscosity characterization revealed that the FL increase was resulted from a formation of gel upon storage. Therefore, the slurry prepared in the acidic condition is necessary to exhibit the adhesive ability. Unfortunately, a significant dissolution of catalyst was found in slurries with pH ≦ 5 and active plates coated in such condition required a high reaction temperature of T95 ~ 300oC from the SRM test.
In order to improve SRM activity of MCR, a none-acidic binder was prepared by dissolving zirconia alkoxide in 1-propanol. The SRM test revealed that active plates coated by this binder indeed exhibited much better catalytic activity than those coated with the commercial ZrO2 sol. Consequently, T95 was significantly decreased to 240oC.
摘 要 I
Abstract II
致 謝 IV
目 錄 V
圖 目 錄 IX
表 目 錄 XVII
第一章 前言 1
1.1研究緣起 1
1.2 研究動機 3
第二章 文獻回顧 5
2.1 甲醇蒸氣重組反應 5
2.1.1 銅(Cu)系催化劑 6
2.1.2 非銅系催化劑 9
2.2 催化劑洗積技術 11
2.2.1 洗積技術簡介 11
2.2.2 洗積的方法 13
2.2.3 黏著劑之選用 15
2.2.4 洗積之附著性測試 20
2.3 微型重組器的發展 26
第三章 實驗設備及方法 36
3.1 實驗材料 36
3.2 實驗設備 37
3.3 實驗流程 38
3.3.1 催化劑製備流程 38
3.3.2 自製黏著劑製備流程 38
3.3.3 製備催化劑洗積漿料 38
3.3.4 催化劑洗積於不鏽鋼試片流程 42
3.4 特性分析與性質測試 44
3.4.1 X-ray粉末繞射儀 44
3.4.2 穿透式電子顯微鏡 46
3.4.3場發射掃描式電子顯微鏡 48
3.4.4 比表面積與孔隙度分析儀 50
3.4.5 溶膠黏度值之量測 55
3.4.6 化學分析電子分光儀 57
3.4.7 粒徑分析 59
3.4.8 程控升溫還原反應 62
3.4.9 催化洗積層之附著度測試 63
3.4.10 催化劑之活性測試 65
第四章 實驗結果與討論 67
4.1 ZrO2溶膠特性分析 67
4.1.1 市售黏著劑 67
4.1.2 自製黏著劑 73
4.2 甲醇重組催化劑洗積漿料特性分析 85
4.2.1 市售黏著劑 85
4.2.2 自製黏著劑 95
4.3催化劑洗積於微流道之分析及鑑定 120
4.3.1 市售黏著劑 120
4.3.2 自製黏著劑 126
4.4 本研究成果與國際指標文獻之比較 130
第五章 結論與未來研究方向 134
5.1 結論 134
5.2 未來研究方向 135
參考文獻 136
附錄A 化學分析電子光譜標準品 144
附錄B 溶膠表面電位量測 145
附錄C 自製黏著劑之熱重分析 146
1.江文鉅、林永清,綠色能源科技-淺談燃料電池,生活科技教育月刊,39(4),19-30 (2006)。
2.衣寶廉,「燃料電池-原理與應用」,五南台北圖書出版有限公司(2005)。
3.謝惠子,新尖兵概念-淺談氫氣,能源報導94年01月號,35-37 (1995)。
4.Choi Y. and Stenger H. G., Fuel cell grade hydrogen from methanol on a commercial Cu/ZnO/Al2O3 catalyst, Appl. Catal. B-Environ., 38(4), 259–269 (2002).
5.Bravo J., Karim A., Conant T., Lopez G. P., and Datye A., Wall coating of a CuO/ZnO/Al2O3 methanol steam reforming catalyst for micro-channel reformers, Chem. Eng. J., 101(1-3), 113–121 (2004).
6.Fogler H. S., Elements of Chemical reaction engineering, 2nd ed., Prentice-Hall, Int. Ser. Phys. Chem. Eng. Sci., 128 (1992).
7.De Wild P. J. and Verhaak M. J. F. M., Catalytic production of hydrogen from methanol, Catal. Today, 60(1), 3–10 (2000).
8.Stefanescu A., van Veen A. C., Mirodatos C., Beziat J. C., and Duval-Brunel E., Wall coating optimization for microchannel reactors, Catal. Today, 125(1-2), 16–23 (2007).
9.Agrafiotis C. and Tsetsekou A., The effect of processing parameters on the properties of ?-alumina washcoats deposited on ceramic honeycombs, J. Mater. Sci., 35(4), 951–960 (2000).
10.Lim M. S., Kim M. R., Noh J., and Woo S. I., A plate-type reactor coated with zirconia-sol and catalyst mixture for methanol steam-reforming, J. Power Sources, 140(1), 66–71 (2005).
11.Won J. Y., Jun H. K., Jeon M. K., and Woo S. I., Performance of microchannel reactor combined with combustor for methanol steam reforming, Catal. Today, 111 (3-4), 158–163 (2006).
12.Metcalfe I. S. and Sundaresan S., Oxygen transfer between metals and oxygen-ion conducting supports, AIChE J., 34(2), 195–208 (1988).
13.Dow W. P., Wang Y. P., and Huang T. J., Yttria-stabilized zirconia supported copper oxide catalyst: I. Effect of oxygen vacancy of support on copper oxide reduction, J. Catal., 160(2), 155–170 (1996).
14.Dow W. P. and Huang T. J., Yttria-stabilized zirconia supported copper oxide catalyst: II. Effect of oxygen vacancy of support on catalytic activity for CO oxidation, J. Catal., 160(2), 171–182 (1996).
15.Agrafiotis C., Tsetsekou A. and Ekonomakou A., Effect of particle size on the adhesion properties of oxide washcoats on cordierite honeycombs, J. Mater. Sci. Lett., 18(17), 1421–1424 (1999).
16.Agrafiotis C. and Tsetsekou A., The effect of powder characteristics on washcoat quality. Part I: Alumina washcoats, J. Eur. Ceram. Soc., 20(7), 815–824 (2000).
17.Agrafiotis C. and Tsetsekou A., The effect of powder characteristics on washcoat quality. Part II: Zirconia, titania washcoats - multilayered structure, J. Eur. Ceram. Soc., 20(7), 825–834 (2000).
18.Agrafiotis C., Tsetsekou A., and Leon I., Effect of slurry rheological properties on the coating of ceramic honeycombs with yttria-stabilized-zirconia washcoats, J. Am. Ceram. Soc., 83(5), 1033–1038 (2000).
19.Park G. G., Yim S. D., Yoon Y. G., Kim C. S., Seo D. J., and Eguchi K., Hydrogen production with integrated microchannel fuel processor using methanol for portable fuel cell systems, Catal. Today, 110(1-2), 108–113 (2005).
20.Kundu A., Park J. M., Ahn J. E., Park S. S., Shul Y. G., and Han H. S., Micro-channel reactor for steam reforming of methanol, Fuel, 86(9), 1331–1336 (2007).
21.Kundu A., Ahn J. E., Park S. S., Shul Y. G., and Han H. S., Process intensification by micro-channel reactor for steam reforming of methanol, Chem. Eng. J., 135(1-2), 113–139 (2008).
22.Isogai N., Takagawa M., Watabe K., Yoneoka M., and Yamagishi K., Catalyst composition for decomposition of methanol, European Patent, 0342,614 (1989).
23.Klisurski D., Relationship between the selectivity and activity of oxide catalyst in the oxidation of methanol and the initial temperature of their reaction, Kinet. Catal., 11(1), 221–222 (1970).
24.Lindström B. and Pettersson L. J., Deactivation of copper-based catalysts for fuel cell applications, Catal. Lett., 74(1-2), 27–30 (2001).
25.Iwasa N., Masuda S., Ogawa N., and Takezawa N., Steam reforming of methanol over Pd/ZnO: Effect of the Formation of PdZn Alloys upon the Reaction, Appl. Catal. A-Gen., 125(1), 145–157 (1995).
26.Takezawa N. and Iwasa N., Steam reforming and dehydrogenation of methanol: Difference in the catalytic functions of copper and group VIII metals, Catal. Today, 36(1), 45–56 (1997).
27.Breen J. P. and Ross J. R. H., Methanol reforming for fuel-cell applications: Development of zirconia-containing Cu-Zn-Al catalysts, Catal. Today, 51(3-4), 521–533 (1999).
28.Takahashi T., Inoue M., and Kai T., Effect of metal composition on hydrogen selectivity in steam reforming of methanol over catalysts prepared from amorphous alloys, Appl. Catal. A-Gen., 218(1-2), 189–195 (2001).
29.陳永杰,「以金觸媒催化甲醇重組反應製造氫氣」,博士論文,國立清華大學化學系(2005)。
30.林秋杏,「金觸媒進行甲醇重組反應來製造氫氣」,碩士論文,國立清華大學化學系(2005)。
31.Franz A. J., Jensen K. F., and Schmidt M. A., Palladium membrane microreactors, Microreaction Technology: Industrial Prospects, 267–276 (2000).
32.Germani G., Stefanescu A., Schuurman Y., and van Veen A. C., Preparation and characterization of porous alumina-based catalyst coatings in microchannels, Chem. Eng. Sci., 62(18-20), 5084–5091 (2007).
33.Meille, V., Review on methods to deposit catalysts on structured surfaces, Appl. Catal. A-Gen., 315(complete), 1–17 (2006).
34.Pfeifer, P., Schubert, K., and Emig, G., Preparation of copper catalyst washcoats for methanol steam reforming in microchannels based on nanoparticles, Appl. Catal. A-Gen., 286(2), 175–185 (2005).
35.Pfeifer P., Schubert K., Liauw M. A., and Emig G., PdZn catalysts prepared by washcoating microstructured reactors, Appl. Catal. A-Gen., 270(1-2), 165–175 (2004).
36.Pfeifer P., Görke O., and Schubert K., in: Proceedings of IMRET 6, AIChE Pub. 164, 281–287 (2002).
37.Yoldas B. E., Alumina sol preparation from alkoxides, Ceram. Bull. 54(3) 289–290 (1975).
38.Brinker C. J. and Scherer G. W., “Sol-gel science-the physics and chemistry of sol-gel processing”, Academic press, New York (1990).
39.Zwinkels M. F. M., Jaras S. G., Menon P. G., and Asen, K. I., Preparation of anchored ceramic coatings on metal substrates: a modified sol-gel technique using colloidal silica sol, J. Mater. Sci., 1(31), 6345–6349 (1996).
40.馬振基,「奈米材料科技原理與應用」,全華科技圖書股份有限公司(2005)。
41.Haas-Santo K., Fichtner M., and Schubert K., Preparation of microstructure compatible porous supports by sol-gel synthesis for catalyst coatings, Appl. Catal. A-Gen., 220(1-2), 79–92 (2001).
42.Germani G., Alphonse P., Courty M., Schuurman Y., and Mirodatos C., Platinum/ceria/alumina catalysts on microstructures for carbon monoxide conversion, Catal. Today, 110(1-2), 114–120 (2005).
43.謝政璋,「氧化鋯超微粒子之製備研究」,碩士論文,國立成功大學化學工程研究所(1998)。
44.Database for powder diffraction patterns of Joint Committee on Powder Diffraction Standards (JCPDS).
45.http://cst-www.nrl.navy.mil/lattice/spcgrp/index.html
46.Jeong G. Y., Yeon G. J., and Sung C. C., Design and microstructure of ZrO2/SUS316 functionally graded materials by tape casting, Mat. Lett., 37(6), 304–311 (1998).
47.Rezwan K., Ceramic technology, lecture of University Bremen (2009).
48.Tang F. Q., Huang X. X., Zhang Y. F., and Guo J. K., Effects of dispersants on surfaces chemical properties of nano-zirconia suspensions, Ceram. Int., 26(1), 93–97 (2000).
49.Wang J. and Gao L., Surface and electrokinetic properties of Y-TZP suspensions stabilized by polyelectrolytes, Ceram. Int., 26(2), 187–191 (2000).
50.http://www.sunstar4u.com/
51.Yasaki Y. Y. S., Ihara K., and Ohkubo K., Method of manufacturing an exhaust gas purifying catalyst, US Patent 5,208,206, U.S.A. (1993).
52.Valentini M., Groppi G., Cristiani C., Levi M., Tronconi E., and Forzatti P., The deposition of γ-Al2O3 layers on ceramic and metallic supports for the preparation of structured catalysts, Catal. Today, 69(1-4), 307–314 (2001).
53.呂志興、陳政群、黃家銘、曾善訓、劉毅弘、金順志,微型重組器之燃燒器開發,第三屆全國氫能與燃料電池學術研討會論文集(2008)。
54.Kawamura Y., Ogura N., Yamamoto T., and Igarashi A., A miniaturized methanol reformer with Si-based microreactor for a small PEMFC, Chem. Eng. Sci., 61(4), 1092–1101 (2006).
55.Kawamura Y., Yamamoto K., Ogura N., Katsumata T., and Igarashi A., Preparation of Cu/ZnO/Al2O3 catalyst for a micro methanol reformer, J. Power Sources, 150(1-2), 20–26 (2005).
56.Park G. G., Yim S. D., Yoon Y. G., Lee W. Y., Kim C. S., and Seo D. J., Hydrogen production with integrated microchannel fuel processor for portable fuel cell systems, J. Power Sources, 145(2), 702–706 (2005).
57.Jähnisch K., Hessel V., Löwe H., and Baerns M., Chemistry in microstructured reactors, Angewandte Chemie - International Edition 43(4), 406–446 (2004).
58.Kolb G. and Hessel V., Micro-structured reactors for gas phase reactions, Chem. Eng. J., 98(1-2), 1–38 (2004).
59.Schubert K., Brandner J., Fichtner M., Linder G., Schygulla U., and Wenka A., Microstructure devices for applications in thermal and chemical process engineering, Microscale Therm. Eng., 5(1), 17–39 (2001).
60.Reuse P., Renken A., Haas-Santo K., Görke O., and Schubert K., Hydrogen production for fuel cell application in an autothermal micro-channel reactor, Chem. Eng. J., 101(1-3), 133–141 (2004).
61.Chen G., Li S., and Yuan Q., Pd-Zn/Cu-Zn-Al catalysts prepared for methanol oxidation reforming in microchannel reactors, Catal. Today, 120(1), 63–70 (2007).
62.吳錦華,「微溫度感測器及微加熱器應用於微重組器之研究」,碩士論文,元智大學機械工程研究所(2007)。
63.王明光、王敏昭,「實用儀器分析」,國立編譯館(2003)。
64.Rouquerol F., Rouquerol J. and Sing K., “Adsorption by powders and porous solids, Principles, Methodology and applications”, Academic press (1999).
65.Frisken B. J., Revisiting the method of cumulants for the analysis of dynamic light-scattering data, Appl. Opt., 40, 4087–4091 (2001).
66.葉君棣、陳志堅,「X射線光電子分光儀應用手冊」,黎明新竹書店(1984)。
67.Reiner M. and Scott B., “Rheology terminology”, Rheology, Achedemic Press (1967).
68.Chtary M., Henry M., and Livage J., “Synthesis of non-aggregated nanometric crystalline zirconia particles”, Material research bulletin, 29(5), 517–522 (1994).
69.Lide D. R., “CRC handbook of chemistry and physics”, 89 (2009).
70.Moulder J. F., Stickle W. F., Sobol P. E., and Bomben K. D., “Handbook of X-ray photoelectron spectroscopy”, Perkin-Elmer corporation (1992).
71.趙科量,「銅觸媒催化甲醇的部分氧化反應來製造氫氣」,碩士論文,清華大學應用化學所(2005)。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊