跳到主要內容

臺灣博碩士論文加值系統

(3.235.120.150) 您好!臺灣時間:2021/08/03 05:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:魏金龍
研究生(外文):Jin-Long Wei
論文名稱:製備金屬觸媒/奈米碳管複合電極以應用於直接甲醇燃料電池
論文名稱(外文):Fabrication of Metallic Catalyst/Carbon Nanotube Composite Electrodes for Direct Methanol Fuel Cells
指導教授:謝建德謝建德引用關係
學位類別:碩士
校院名稱:元智大學
系所名稱:化學工程與材料科學學系
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:98
中文關鍵詞:奈米碳管石墨電化學活性合金化程度直接甲醇燃料電池
外文關鍵詞:Pt–Co catalystsCarbon nanotubesElectrochemical activityDegree of alloyingDirect methanol fuel cells
相關次數:
  • 被引用被引用:0
  • 點閱點閱:162
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
本實驗分成兩部份進行探討,第一部份是使用三種不同還原法製備相同比例的Pt–Co/CNT觸媒;第二部份則是使用微波還原法製備不同比例的Pt–Co/MCMB觸媒。
第一部分研究中,分別以三種不同方法製備鉑-鈷/奈米碳管(Pt–Co/CNT) 金屬觸媒,並選用循環伏安法(CV) 和甲醇氧化法去探討其電化學性質。由X光繞射分析圖(XRD) 顯示出,這三組觸媒擁有不同的結晶大小,且有不同程度的原子分散度。使用硼氫化鈉當作還原劑時,鉑表面上會覆蓋一層鈷,會產生雙金屬Pt–Co 粒子,直接使用熱還原法會產生Pt–Co的奈米合金,且合金化程度會變高。由實驗結果指出活性表面覆蓋率會隨著Pt–Co觸媒合金化程度的增加而提升,此結果顯示原子分散的重要性。由循環伏安法(CV) 中可判別出合金化程度有利於電化學活性的提升。在甲醇氧化測試中其電化學活性較佳的樣品,原因歸咎於觸媒的雙功能機制(bifunctional mechanism),Pt–Co/CNT觸媒提供很多Pt–Co,在甲醇氧化時,有OH基產生即與Co產生Co–OH鍵結,形成中間產物,因此Pt就會得到更多的活性位置。有鑑於此,合成條件是影響表面原子分佈的重要因素之ㄧ,故推斷其觸媒活性與表面原子分佈有關。
第二部分研究中,以微波還原法製備不同比例鉑–鈷/石墨(Pt–Co/MCMB) 金屬觸媒,並以循環伏安法和甲醇氧化法探討其電化學性質。由XRD透露出這三組觸媒不但擁有不同的結晶大小,而且有不同程度的原子分散度。從CV圖中,我們可看出電化學比表面積會隨著掃瞄圈數的增加而減少,又以PtCo/MCMB (Pt/Co=50/50) 這組觸媒擁有較佳的電化學特性,顯示出Pt/Co不同的重要性。在甲醇氧化測試中,經過循環圈數100圈後其IF/IB (Pt/Co=25/75,50/50,75/25) 的值1.08、1.12與1.13,我們把原因歸咎於使用微波還原法所製備的觸媒粒子大小是影響其電化學活性的重要因素之ㄧ,且使用微波還原法可大幅減少還原時間。
This research was divided into two parts to explore. In the part 1, we used three different reduction methods to prepare the same ratios of Pt–Co/CNT catalysts. In the part 2, we used the method of microwave reduction to prepare three kinds of proportion of Pt–Co/MCMB catalysts.
Part 1: The electrochemical activities of three types of Pt–Co/CNT catalysts, prepared from different Co depositions, in methanol oxidation have been investigated. X-ray diffraction reveals that these Pt–Co/CNT catalysts possess not only different crystalline sizes but also different levels of atomic distribution. The use of strong reducing agent (NaBH4) enables the formation of a cobalt layer over the Pt surface, inducing bimetallic Pt–Co particles, whereas direct thermal reduction enables the formation of Pt–Co nanoalloy with a high degree of alloying. It has been shown that the normalized active surface coverage increases the alloying degree of Pt–Co catalysts, indicating the importance of atomic distribution. Cyclic voltammetric measurement also reveals that the Pt–Co/CNT catalyst with a good alloying degree exhibits a better electrochemical activity, high CO tolerance, and long-term durability (> 100 cycles). This activity improvement in methanol oxidation can be attributed to the bifunctional mechanism of binary catalysts: since the Pt–Co/CNT catalyst offers a large amount of Pt–Co pairs, the Co site serves as a promoting center for the generation of Co–OH species, and thus more Pt sites are available for methanol oxidation. Accordingly, the synthesis condition is one of the key factors affecting the distribution of surface atoms, significantly related to their catalytic ability in methanol oxidation.
Part 2: The method of microwave reduction was used to prepare Pt–Co/MCMB catalysts with different Pt/Co atomic ratios. It revealed that three kinds of catalysts, Pt25Co75/MCMB, Pt50Co50/MCMB and Pt75Co25/MCMB, exhibit different crystal sizes showing different electrochemical activities in methanol oxidation. From CV curve, the electrochemical surface area is the decrease function of scan number. The Pt50Co50/MCMB catalyst displays the best electrochemical properties among the Pt-Co/MCMB catalysts, revealing importance of different proportion. In the methanol oxidization, IF/IB value of Pt25Co75/MCMB, Pt50Co50/MCMB and Pt75Co25/MCMB are 1.08, 1.12 and 1.13 after 100 cycles, respectively. We inference the particle size of the method of microwave reduction to affect the electrochemical activity is one of importance factors, and the method of microwave reduction can substantial decrease reduction time.
中文摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VII
表目錄 X
第一章 1
緒論 1
1.1 研究目的與內容 3
第二章 5
2.1 奈米碳管發展簡介 5
2.1.1 奈米碳管的結構與特性 7
2.1.2 奈米碳管的成長機制與合成 10
2.1.3 奈米碳管的應用 14
2.1 表面修飾 18
2.1.5 包覆性修飾 18
2.1.5 高能量修飾 19
2.1.5 分子間應力的修飾 21
2.1.5 共價鍵修飾 21
2.2 燃料電池介紹 24
2.3 電化學原理 27
2.4 電化學測試原理 29
第三章 31
3.1 研究目的與內容 31
3.2 研究動機 32
3.3 實驗方法與分析 33
3.3.1 實驗藥品 33
3.3.2 實驗儀器裝置 34
3.4 實驗步驟 35
3.4.1 奈米碳管特性官能基植入 35
3.4.2 鉑/奈米碳複合管製備 36
3.4.3 金屬觸媒/奈米碳複合管製備 37
3.4.4 電化學特性測試 38
3.4.5 循環伏安法測試 39
3.4.6 甲醇氧化電化學測試 39
3.5 分析方法 40
3.5.1 X-ray粉末繞射儀 40
3.5.2 場發射掃描式電子顯微鏡 42
3.5.3 場發射穿透式電子顯微鏡 44
3.6 結果與討論 46
3.6.1 結構分析 48
3.6.2 合金化程度的計算 54
3.6.3 循環伏安法分析 57
3.6.4 電化學活性分析 60
3.6.5 甲醇氧化電化學測試 64
3.7 結論 67
第四章 68
4.1 研究動機 68
4.2 實驗方法與分析 69
4.2.1 實驗藥品 69
4.2.2 實驗儀器裝置 70
4.3 實驗步驟 71
4.3.1 MCMB特性官能基植入 71
4.3.2 金屬觸媒/石墨複合碳材製備 72
4.3.3 電化學特性測試 73
4.3.4 循環伏安法測試 74
4.3.5 甲醇氧化電化學測試 74
4.4 結果與討論 75
4.4.1 金屬觸媒/石墨複合碳材 75
4.4.2 結構分析 76
4.4.3 電化學活性分析 83
4.4.4 甲醇氧化電化學測試 89
4.5 結論 92
未來展望 93
參考文獻 94
1.G. Che, B. B. Lakshmi, E. R. Fisher, C. R. Martin, Nature 393 (1998) 346–349.
2.E. Frackowiak, F. Béguin, Carbon 40 (2002) 1775–1787.
3.A. Wadhawan, R. E. Stallcup II, J. M. Perez, Appl. Phys. Lett. 78 (2001) 108–110.
4.S. Frank, P. Poncharal, Z. L. Wang, W. A. De Heer, Science 280 (1998) 1744–1746.
5.C.-T. Hsieh, J.-M. Chen, R.-R. Kou, Y.-H. Huang, Appl. Phys. Lett. 84 (2004) 1186–1188.
6.N. Li, C. R. Martin, J. Electrochem. Soc. 148 (2001) A164–170.
7.H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, R. E. Smalley, Nature 318 (1985) 162–163.
8.T. H. Henning, F. Salama, Science 282 (1998) 2204–2210.
9.洪昭南、徐逸明、王宏達 ,「奈米碳管結構及特性簡介」,化工,第49卷 (2002) 23–30。
10.Rice University:Rick Smalley’s Group Home Page-Image Gallery.
11.http://www.nanotechnologies.qc.ca/projets/nanotubes/
12.成會明, 張勁燕, “奈米碳管”, 五南圖書出版股份有限公司.
13.E. T. Thostenson, Z. Ren, T. W. Chou, Compos. Sci. Technol. 61 (2001) 1899-1912.
14.M. S. Dresselhaus, G. Dresselhaus, P. C. Eklund, Academic, San Diego, (1996).
15.R. T. K. Baker, P. S. Harries, “Chemistry and Physics of Carbon”, Marcel Dekker New York (1978).
16.S.B. Sinnott, R. Andrews, D. Qian, A.M. Rao, Z. Mao, E.C. Dickey,F. Derbyshire, Chem. Phys. Lett. 315 (1999) 25–30.

17.A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, R.E. Smalley, Science 273 (1996) 483–487.
18.J. M. Yacaman, M. M. Yoshida, L. Rendon, J. G. Santiesteban, Appl. Phys. Lett. 62 (1993) 202–204.
19.Y. L. Li, Yu YD, Liang Y, J. Mater. Res. 12 (1997) 1678–1680.
20.S. Iijima, Nature 354 (1991) 56-58.
21.A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fisher, R. E. Smalley, Science 273 (1996) 483-487.
22.Z. F. Ren, Z. P. Huang, J. W. Xu, J. H. Wang, P. Bush, M. P. Siegal, Science 282 (1998) 1105-1107.
23.C. Journet, P. Bernier, Appl. Phys. A 67 (1998) 1-9.
24.Y. L. Li, Y. D. Yu, Y. Liang, J. Mater.s Res. 12 (1997) 1678-1680.
25.L. C. Qin, D. Zhou, A. R. Krauss, D. M. Gruen, Appl. Phys. Lett. 72 (1998) 3437-3439.
26.D. Heer, A. Châtelain, D. Ugarte, Science 270 (1995) 1179–1180.
27.F. Lamari Darkrim, P. Malbrunot, G.P. Tartaglia, Int. J. Hydrogen Energy 27 (2002) 193–202.
28.A.C. Dillon, K.M. Jones, T.A. Bekkedahl, C.H. Kiang, D.S. Bethune, M.J. Heben, Nature 386 (1997) 377–379.
29.R. Zacharia, K.Y. Kim, A.K.M. Fazle Kibria, K.S. Nahm, Chem. Phys. Lett. 412 (2005) 369–375.
30.F.H. Yang, A.J. Lachawiec, Jr., R.T. Yang, J.Phys.Chem.B 110 (2006) 6236–6244.
31.X. P. Gao, Y. Lan, G. L. Pan, F. Wu, J. Q. Qu, D. Y. Song, P. W. Shen, Electrochem. Solid-State Lett. 4 (2001) A173–A175.
32.M. H. Yun, Y. H. Mo, K.S. Park, K. S. Nahm, Int. J. Hydrogen Energy, 26 (2001) 823–829.
33.J. Li, M. Moskovits, T. L. Haslett, Chem. Mater 10 (1998) 1963 –1967.
34.X. H. Chen, J. T. Xia, J. C. Peng, W. Z. Li, S. S. Xie, Compo. Sci. Tech. 60 (2000) 301–306.
35.L. M. Ang, T. S. A. Hor, G. Q. Xu, , C. H. Tung, S. P. Zhao, J. L. S. Wang, Carbon 38 (2000) 363–372.
36.W. X. Chen, J. P. Tu, H. Y. Gan, Z. D. Xu, Q. G. Wang, J. Y. Lee, Z. L. Liu, X. B. Zhang, Surf. Coat. Tech. 160 (2002) 68–73.
37.F. Kokai, A. Koshio, M. Shiraishi, T. Matsuta, S. Shimoda, M. Ishihara, Y. Koga, H. Deno, Diamond Relat. Mater. 14 (2005) 724–728.
38.B. N. Khare, P. Wilhite, M. Meyyappan, Nanotechnology 15 (2004) 1650–1654.
39.K. Kubota, M. Sano, T. Masuko, Jpn. J. Appl. Phys. 1 44 (2005) 465–468.
40.H. S. Kim, H. Lee, K. S. Han, J. H. Kim, M. S. Song, M. S. Park, J. Y. Lee, J. K. Kang, J. Phys. Chem. B. 109 (2005) 8983–8986.
41.H. M. Kim, H. S. Kim, S. K. Park, J. Joo, T. J. Lee, C.J. Lee, J. Appl. Phys. 97 (2005) 026103(1–3).
42.J. Liu, A. G. Rinzler, H. Dai, J.H. Hafner, R. Kelley Bradley, P. J. Boul, A. Lu, R. E. Smalley, Science 280 (1998) 1253–1256.
43.P. M. Ajayan, T. W. Ebbesen, T. Ichihashi,. Nature 362 (1993) 522–525.
44.S. C. Tsang, P. J. F. Harris, M. L. H. Green, Nature 362 (1993) 520–522.
45.D. Tasis, N. Tagmatarchis, V. Georgakilas, M. Prato, Chem. Eur. J. 9 (2003) 4000–4008.
46.S. A. Curran, P. M. Ajayan, W. J. Blau, D. L. Carroll, J. N. Coleman, A. B. Dalton, A. P. Davey, A. Strevens, Adv. Mater. 10 (1998) 1091–1093.
47.J. N. Coleman, A. B. Dalton, S. Curran, A. Rubio, A. P. Davey, A. Drury, B. McCarthy, W. J. Blau, Adv. Mater. 12 (2000) 213–216.
48.J.-E. Huang, X.-H. Li, J.-C. Xu, H.-L. Li, Carbon 41 (2003) 2731–2736. M. F. Islam, E. Rojas, D. M. Bergey, A. T. Johnson, A. G. Yodh, Nano Lett. 3 (2003) 269–273.
49.K. Kunimatsu, H. Kita, J. Electroanal Chem. 218 (1987) 155–172.
50.J. B. Goodenough, A. Hamnett, B. J. Kennedy, B. J. et al., Electrochim Acta 32 (1998) 1233–1238.
51.A. J. Bard, L. R. Faulkner, Electrochemical Methods Fundamental and Application, John Wiley & Sons Canada 2nd ed. (2001).
52.S. Norio, Electrochemistry at Metal and Semiconductor Electrodes, Elsevier (1998).
53.Y. C. Xing, J. Phys. Chem. B. 108 (2004) 19255–19259.
54.G. Che, B. B. Lakshmi, C. R. Martin, E. R. Fisher, Langmuir 15 (1999) 750–758.
55.S. Kim, S. J. Park, J. Power Sources 159 (2006) 42–45.
56.J. Chen, M. Wang, B. Liu, Z. Fan, K. Cui, Y. Kuang, J. Phys. Chem. B 110 (2006) 11775–11779.
57.E. S. Steigerwalt, G. A. Deluga, C. M. Lukehart, J. Phys. Chem. B 106 (2002) 760–766.
58.S.-Y. Huang, S.-M. Chang, C.-L. Lin, C.-H. Chen, C. T. Yeh, J. Phys. Chem. B 110 (2006) 23300–23305.
59.Z.-H. Yang, H.-Q. Wu, Chem. Phys. Lett. 343 (2001) 235–240.
60.Z. Liu, J.-Y. Lee, W. Chen, M. Han, L.-M. Gan, Langmuir 20 (2004) 181–187.
61.Y. Shao, G. Yin, Y. Gao, P Shi, J. Electrochem. Soc. 153 (2006) A1093–1097.
62.Y.-L. Yao, Y. Ding, L.-S. Ye, X.-H. Xia, Carbon 44 (2006) 61–66.
63.D. A. Stevens, J. R. Dahn, J. Electrochem. Soc. 150 (2003) A770–775.
64.J. R. C. Salgado, E. Antolini, E. R. Gonzalez, J. Phys. Chem. B 108 (2004) 17767–17774.
65.M. Gangeri, G. Centi, A. La Malfa, S. Perathoner, R. Vieira, C. Pham-Huu, M. J. Ledoux, Catal. Today 102-103 (2005) 50–57.
66.S. D. Knights, K. M. Colbow, J. St-Pierre, D. P. Wilkinson, J. Power Sources 127 (2004) 127–134.
67.C. T. Hsieh, J. Y. Lin, J. L. Wei, Int. J. Hydrogen Energy 34 (2009) 685–693.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊