( 您好!臺灣時間:2021/07/30 00:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::


研究生(外文):Yang-Sheng Lin
論文名稱(外文):Development of Phototrophic Microbial-based Fuel Cell
外文關鍵詞:Phototrophic micro-based fuel cellsphotosynthesislight intensityRhodopseudomonas palustrismodified electrodemediator
  • 被引用被引用:0
  • 點閱點閱:404
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
本研究以光合細菌(Rhodopseudomonas palustris)為生物觸媒進行光合微生物燃料電池開發與研究,研究的項目包括(1)電極改質(modified electrode)之影響;(2)介電質(mediator)型態之探討及(3)光合微生物電池於黑暗下或不同光照強度進行化學異營或光合異營之電池效能比較。研究結果得知,改質電極方面,使用奈米碳管石墨板電極分析電池效能可得到最大功率密度為3.26 mW m-2,其中最大的功率輸出分別為粗糙化石墨板的7.4倍、石墨板的12.7倍、不�袗�板的108倍。以介電質Neutral red (NR)固定於石墨板電極,並且利用固定化之電極配合懸浮NR於陽極中,有最大的6.29庫倫輸出表現。探討光照影響研究發現,以葡萄糖為碳源在黑暗下進行化學異營可以擁有最高開環電壓230 mV和最低內電阻10 kΩ,在光照下進行光合異營則具有平穩的電功率輸出優點,本研究可以發現光合微生物燃料電池具有輸出平穩功率和利用光合作用增加電池壽命之效果,為具有應用價值潛力之微生物燃料電池。
In this study, the Rhodopseudomonas palustris was employed as bio-catalyst for development of Photomicrobial fuel cell (PMFC). The research focus upon (i) impact of modified electrodes on performance of biofuel cell; (ii) comparison of biofuel cell efficiency by the application of mediators and (iii) determination of biofuel cell under photohetrophic and chemohetrophic circumstance. The results demonstrated that carbon nanotube graphite of electrode presents more surface area from cyclic voltammograms analysis and generate the highest power output as compared to those graphite and rough-graphite electrodes. Application of mediator of suspended or immobilized neutral red could improved the PMFC performance. The combination of both can yield maximum coulomb. During chemohetrophic determination, PMFC had high cell performance while for photohetrophic, PMFC had stable power output. The results obtained from this study concluded the PMFC could be a promising vehicle for the requirement of energy supply and sustainable development.
第一章 緒論 1

1.1前言 1
1.2燃料電池 4
1.2.1物理化學燃料電池 4
1.2.2生物燃料電池 5
1.2.3酵素型燃料電池(Enzymatic fuel cells or Enzyme-based fuel cells) 9
1.2.4微生物型燃料電池(Microbial fuel cells) 10
1.2.5光合微生物燃料電池(Photomicrobial fuel cells) 12
1.2.6微生物燃料電池的內電阻 13
1.2.7提高微生物型燃料電池的有效方法 18
1.3研究動機與目的 20

第二章 以改質之電極探討光合微生物燃料電池效能 24

2.1前言 24
2.2理論背景 24
2.3材料與方法 26
2.3.1材料 26
2.3.2 方法 29
2.4 結果與討論 34
2.4.1電極改質之循環伏安儀分析 34
2.4.2改質電極之電子顯微分析 37
2.4.3電極改質後對光合菌微生物燃料電池的效能影響 40
2.5結論 46

第三章 介電質型態與光合微生物燃料電池影響探討 47

3.1前言 47
3.2 背景理論 47
3.2.1介電質提升電子傳導原理 47
3.2.2生物燃料電池常用之介電質型態 49
3.2.3介電質的選擇 50
3.3材料與方法 52
3.3.1材料 52
3.3.2方法 53
3.4結果與討論 55
3.4.1固定化NR測試與檢測 55
3.4.2石墨板與固定化NR電極板之輸出電流比較 61
3.5結論 70

第四章 探討光合燃料電池對於光源與碳源改變之影響 71

4.1前言 71
4.2背景理論 71
4.3材料與方法 78
4.3.1材料 78
4.3.2方法 80
4.5結論 92

第五章 總結 93

參考文獻 97

附錄 101
Bullen, R. A., T. C. Arnot, J. B. Lakeman, and F. C. Walsh, 2006, Biofuel cells and their development: Biosensors and Bioelectronics, v. 21, no. 11, p. 2015-2045.

Chaudhuri, S. K., and D. R. Lovley, 2003, Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells: Nat Biotechnol., v. 21(10), p. 1229-1232.

Chiao, M., K. B. Lam, and L. Lin, 2006, Micromachined microbial and photosynthetic fuel cells: Journal of Micromechanics and Microengineering, v. 16, no. 12, p. 2547-2553.

Duine, J. A., 1999, The PQQ story.: J Biosci Bioeng., v. 88, p. 231-236.

Dumas, C., A. Mollica, D. ron, R. Basseguy, L. Etcheverry, and A. Bergel, 2008, Checking graphite and stainless anodes with an experimental model of marine microbial fuel cell: Bioresource Technology, v. 99, no. 18, p. 8887-8894.

Fu, C. C., C. H. Su, T. C. Hung, C. H. Hsieh, D. Suryani, and W. T. Wu, 2009, Effects of biomass weight and light intensity on the performance of photosynthetic microbial fuel cells with Spirulina platensis: Bioresource Technology, v. 100, no. 18, p. 4183-4186.

Furukawa, Y., T. Moriuchi, and K. Morishima, 2006, Design principle and prototyping of a direct photosynthetic/metabolic biofuel cell (DPMFC): Journal of Micromechanics and Microengineering, v. 16, no. 9, p. S220-S225.

Harwood, C. S., and J. Gibson, 1988, Anaerobic and aerobic metabolism of diverse aromatic compounds by the photosynthetic bacterium Rhodopseudomonas palustris: Applied and Environmental Microbiology, v. 54, no. 3, p. 712-717.

Ieropoulos, I. A., J. Greenman, C. Melhuish, and J. Hart, 2005, Comparative study of three types of microbial fuel cell: Enzyme and Microbial Technology, v. 37, no. 2, p. 238-245.

Katz, E., I. Willner, and A. N. hipway, 2003, Biochemical fuel cells, in W Vielstich , HA Gasteiger , and A Lamm eds., Handbook of Fuel Cells Fundamentals, Technology and Applications: John Wiley & Sons, Ltd.

Lam, K. B., E. A. Johnson, M. Chiao, and L. Lin, 2006, A MEMS photosynthetic electrochemical cell powered by subcellular plant photosystems: Journal of Microelectromechanical Systems, v. 15, no. 5, p. 1243-1250.

Larimer, F. W. et al., 2004, Complete genome sequence of the metabolically versatile photosynthetic bacterium Rhodopseudomonas palustris: Nature Biotechnology, v. 22, no. 1, p. 55-61.

Morishima, K., M. Yoshida, A. Furuya, T. Moriuchi, M. Ota, and Y. Furukawa, 2007, Improving the performance of a direct photosynthetic/metabolic bio-fuel cell (DPBFC) using gene manipulated bacteria: Journal of Micromechanics and Microengineering, v. 17, no. 9, p. S274-S279.

Palmore, G. T. R., 1994, "Microbial and enzymatic biofuel cells" in Enzymatic Conversion of Biomass for Fuels Production: ACS Symp.Series, v. 566, p. 271-290.

Park, D. H., and J. G. Zeikus, 2000, Electricity generation in microbial fuel cells using neutral red as an electronophore: Applied and Environmental Microbiology, v. 66, no. 4, p. 1292-1297.

Park, D. H., and J. G. Zeikus, 2003, Improved fuel cell and electrode designs for producing electricity from microbial degradation: Biotechnology and Bioengineering, v. 81, no. 3, p. 348-355.

Park, D. H., C. Vieille, and J. G. Zeikus, 2003, Bioelectrocatalysts: engineered oxidoreductase system for utilization of fumarate reductase in chemical synthesis, detection, and fuel cells: ApplBiochem Biotechnol., v. 111(1), p. 41-53.

Park, D. H., S. K. Kim, I. H. Shin, and Y. J. Jeong, 2000, Electricity production in biofuel cell using modified graphite electrode with Neutral Red: Biotechnology Letters, v. 22, no. 16, p. 1301-1304.

Prasad, D., S. Arun, A. Murugesan, S. Padmanaban, R. S. Satyanarayanan, S. Berchmans, and V. Yegnaraman, 2007, Direct electron transfer with yeast cells and construction of a mediatorless microbial fuel cell: Biosensors & Bioelectronics, v. 22, no. 11, p. 2604-2610.

Prasad, D., T. K. Sivaram, S. Berchmans, and V. Yegnaraman, 2006, Microbial fuel cell constructed with a micro-organism isolated from sugar industry effluent: Journal of Power Sources, v. 160, no. 2 SPEC. ISS., p. 991-996.

Qiao, Y., C. M. Li, S. J. Bao, and Q. L. Bao, 2007, Carbon nanotube/polyaniline composite as anode material for microbial fuel cells: Journal of Power Sources, v. 170, no. 1, p. 79-84.

Rabaey, K., and W. Verstraete, 2005, Microbial fuel cells: Novel biotechnology for energy generation: Trends in Biotechnology, v. 23, no. 6, p. 291-298.

Rabaey, K., N. Boon, S. D. Siciliano, M. Verhaege, and W. Verstraete, 2004, Biofuel cells select for microbial consortia that self-mediate electron transfer: Applied and Environmental Microbiology, v. 70, no. 9, p. 5373-5382.

Rismani-Yazdi, H., S. M. Carver, A. D. Christy, and O. H. Tuovinen, 2008, Cathodic limitations in microbial fuel cells: An overview: Journal of Power Sources, v. 180, no. 2, p. 683-694.

Show, Y., and K. Takahashi, 2009, Stainless steel bipolar plate coated with carbon nanotube (CNT)/polytetrafluoroethylene (PTFE) composite film for proton exchange membrane fuel cell (PEMFC): Journal of Power Sources, v. 190, no. 2, p. 322-325.

Sode, K., A. B. Ito, K. Witarto, H. Watanabe, and a. P. P. Yoshida, 1996, Increased production of recombinant pyrroloquinoline quinone (PQQ) glucose dehydrogenase by metabolically engineered Escherichia coli strain capable of PQQ biosynthesis: J Biotechnol, v. 49, p. 239-243.
Stams, A. J. M., F. A. M. De Bok, C. M. Plugge, M. H. A. Van Eekert, J. Dolfing, and G. Schraa, 2006, Exocellular electron transfer in anaerobic microbial communities: Environmental Microbiology, v. 8, no. 3, p. 371-382.

Wilkinson, S., J. Klar, and S. Applegarth, 2006, Optimizing biofuel cell performance using a targeted mixed mediator combination: Electroanalysis, v. 18, no. 19-20, p. 2001-2007.

Xing, D., Y. Zuo, S. Cheng, J. M. Regan, and B. E. Logan, 2008, Electricity generation by Rhodopseudomonas palustris DX-1: Environmental Science and Technology, v. 42, no. 11, p. 4146-4151.

Xing,D, S Cheng, J M Regan, B E Logan. Change in microbial communities in acetate- and glucose-fed microbial fuel cells in the presence of light. Biosensors and Bioelectronics . 2009.

Yagishita, T., S. Sawayama, K. I. Tsukahara, and T. Ogi, 1997, Effects of intensity of incident light and concentrations of Synechococcus sp. and 2-hydroxy-1,4-naphthoquinone on the current output of photosynthetic electrochemical cell: Solar Energy, v. 61, no. 5, p. 347-353.

Yuhashi, N., J. Tomiyama, S. Okuda, K. Igarashi, and K. Ikebukuro, 2005, Development of a novel glucose enzyme fuel cell system employing protein engineered PQQ glucose dehydrogenase: Biosens.Bioelectron., v. 20, p. 2145-2150.

Zhang, T., Y. Zeng, S. Chen, X. Ai, and H. Yang, 2007, Improved performances of E. coli-catalyzed microbial fuel cells with composite graphite/PTFE anodes: Electrochemistry Communications, v. 9, no. 3, p. 349-353.
第一頁 上一頁 下一頁 最後一頁 top