跳到主要內容

臺灣博碩士論文加值系統

(3.235.174.99) 您好!臺灣時間:2021/07/24 20:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳信誼
研究生(外文):Shin-Yi Wu
論文名稱:低溫大氣壓電漿製備類二氧化矽薄膜
論文名稱(外文):Investigation of Low Temperature Atmospheric Pressure Plasma Deposited SiOx Thin Films
指導教授:黃駿黃駿引用關係
學位類別:碩士
校院名稱:元智大學
系所名稱:化學工程與材料科學學系
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:121
中文關鍵詞:大氣壓電漿化學氣相沉積法類二氧化矽薄膜高分子基材
外文關鍵詞:atmospheric pressure plasmachemical vapor deposition techniqueSiOx thin filmplastic substrate
相關次數:
  • 被引用被引用:8
  • 點閱點閱:238
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
本論文係利用大氣壓電漿技術以化學氣相沉積(CVD)法於高分子基材聚碳酸酯(Polycarbonate, PC)表面製備類二氧化矽薄膜,藉由本研究期望能有效改善高分子基材表面之抗磨損性及耐刮能力。於本實驗製程中所使用之反應前驅物分別為六甲基二矽氮烷(Hexamethyldisilazane, HMDSN)與六甲基二矽氧烷(Hexamethyldisiloxane, HMDSO),搭配電漿功率、噴頭至基材表面距離及氧氣添加流率等實驗參數之調變製備薄膜,並藉由薄膜厚度量測儀、FTIR、XPS、AFM、紫外光-可見光光譜儀(UV-VIS)等分析探討薄膜性質變化,最後配合光放射光譜儀(OES)觀察電漿輝光放電現象,所得之光譜分析將與薄膜性質交互驗證。結果發現,經由大氣壓電漿技術所製備之類二氧化矽薄膜,可發現此薄膜性質乃受氧氣添加流率等實驗參數所影響,藉由適當氧氣添加流率所製備之類二氧化矽薄膜具有良好之無機特性,其C/Si元素比率為0.35,進一步將薄膜製備於高分子基材PC上,其表面鉛筆硬度等級可由6B以下提升至H,而透光度可由89 %提升至93 %,最後,使用大氣壓電漿表面改質技術改善薄膜與PC基材之附著度,比較製程前後可發現薄膜附著度能夠有效提升,該薄膜附著度為100 %。
In this study, atmospheric pressure plasma chemical vapor deposition (APPCVD) technique was employed to deposit SiOx thin film on Polycarbonate (PC) substrates. We anticipate improving the surface properties of plastic substrates. Hexamethyldisilazane (HMDSN) and Hexamethyldisiloxane (HMDSO) were utilized as the precursor for APPCVD. Atmospheric pressure plasma deposited SiOx thin films have been analyzed by the optical thin-film thickness detector, FTIR, XPS, AFM, and UV-VIS. With various operational parameters including in RF plasma power level, the distance of nozzle to substrate, oxygen gas flow rate, APP deposited SiOx thin films have been investigated for the change of surface properties and chemical composition. Moreover, Optical Emission Spectrometry (OES) was used for analysis the luminous gas phase of APPCVD process.
The experimental results determined that the oxygen gas flow rate is the key point of APPCVD process. Depending on the proper operational parameters, SiOx thin film has excellent inorganic features. The hardness of atmospheric pressure plasma deposited PC substrates was improved from 6B to H, and obtains a transmission of 93 % in the visible region. Atmospheric pressure plasma surface modification technique was employed to improve adhesion between SiOx thin film and PC substrate. After atmospheric pressure plasma surface modification, the adhesion of plasma modified PC substrate is improved from 0B (percent area removed>65 %) to 5B (none area removed).
摘要.....................................................I
Abstract...............................................III
誌謝....................................................IV
總目錄...................................................V
表目錄................................................VIII
圖目錄...................................................X
第一章 緒論..............................................1
1.1 前言.................................................1
1.2 二氧化矽薄膜之應用...................................3
1.3 研究動機與目的.......................................4
第二章 文獻回顧..........................................5
2.1 電漿概述.............................................5
2.1.1 電漿定義...........................................5
2.1.2 電漿基本原理.......................................6
2.1.3 電漿基本反應.......................................9
2.2 大氣壓電漿簡介.......................................11
2.2.1 大氣壓電漿基本特性.................................11
2.2.2 大氣壓電漿源.......................................13
2.3 二氧化矽之相關背景...................................16
2.3.1 二氧化矽薄膜之相關研究.............................16
2.3.2 二氧化矽薄膜製程...................................17
2.4 大氣壓電漿技術製備二氧化矽薄膜.......................20
2.5 大氣壓電漿表面改質技術...............................28
第三章 實驗方法與分析....................................31
3.1 實驗目的.............................................31
3.2 實驗步驟.............................................33
3.2.1 實驗系統...........................................33
3.2.2 實驗分析及儀器原理.................................40
3.3 實驗前處理...........................................48
3.3.1 基材準備...........................................48
3.3.2 基材架設...........................................49
第四章 實驗結果與歸納分析................................51
4.1 大氣壓電漿化學氣相沉積...............................52
4.1.1 電漿功率(Power)....................................52
4.1.2 噴頭至基材表面距離(Distance of nozzle to substrate)63
4.1.3 氧氣添加流率(Oxygen flow rate).....................71
4.1.4 透光度與表面形態(Transmission test and Surface morphology)..............................................80
4.1.5 光放射光譜儀(Optical Emission Spectroscopy, OES)...88
4.2 大氣壓電漿表面改質...................................93
4.2.1 電漿功率(Power)....................................93
4.2.2 噴頭至基材表面距離(Distance of nozzle to substrate)...............................................98
4.2.3 處理時間(Time)....................................103
4.2.4 老化測試及薄膜附著度測試..........................108
第五章 結論.............................................112
參考文獻................................................117
附錄A 大氣壓電漿之頂點溫度
1. F. F. Chen, Phys. Plasmas, 2(6) 2164-2175 (1995)
2. B. Graves, IEEE Trans. Plasma Sci., 22(1) 31-42 (1994)
3. J. L. Shohet, IEEE Trans. Plasma Sci., 19(5) 725-733 (1991)
4. V. Hopfe, D. W. Sheel, IEEE Trans. Plasma Sci., 35(2) 204-214 (2007)
5. K. Teshima, Y. Inoue, H. Sugimura, O. Takai, Vacuum, 66 353-357 (2002)
6. P. K. Chu, S. Qin, C. Chan, N. W. Cheung, L. A. Larson, Mater. Sci. Eng., R17 207-280 (1996)
7. H. U. Poll, U. Schladitz, S. Schreiter, Surf. Coat. Technol., 142-144 489-493 (2001)
8. M. Moisan, J. Barbeau, M.-C. Crevier, J. Pelletier, N. Philip, B. Saoudi, Pure Appl. Chem., 74(3) 349-358 (2002)
9. Q. S. Yu, C. Huang, F. H. Hsieh, H. Huff, Y. Duan, Appl. Phys. Lett., 88 013903 (2006)
10. C. Huang, Q. S. Yu, F. H. Hsieh, Y. Duan, Plasma Proc. Polym., 4 77-87 (2007)
11. 張家豪、魏鴻文、翁政輝、柳克強、李安平、寇崇善、吳敏文、曾錦清、蔡文發、鄭國川,物理雙月刊,廿八卷二期440-451 (2006)
12. J. Piehler, A. Brecht, K. E. Geckeler, G. Gauglitz, Biosens. Bioelectron., 11 579-590 (1996)
13. M. B. Chang, M. J. Kushner, M. J. Rood, Environ. Sci. Technol., 26(4) 777-781 (1992)
14. 李灝銘、張木彬,工業污染防治,第89期169-191 (2004)
15. 陳信良、張木彬、李灝銘,化工技術,第122期 234-250 (2004)
16. T. W. Cheng, J. P. Chu, C. C. Tzeng, Y. S. Chen, J. Waste Manage., 22 485-490 (2002)
17. 董家齊、陳寬任,科學發展,第354期 52-59 (2002)
18. 何春松,台灣環保產業雙月刊,第19期 5-9 (2003)
19. M. Čada, O. Churpita, Z. Hubička, H. Šíchová, L. Jastrabík, Surf. Coat. Technol., 177-178 699-704 (2004)
20. S. Roualdes, A. V. D. Lee, R. Berjoan, J. Sanchez, J. Durand, AIChE J., 45(7) 1566-1575 (1999)
21. Y. Duan, C. Huang, Q. S. Yu, IEEE Trans. Plasma Sci., 33(2) 328-329 (2005)
22. M. R. Yang, K. S. Chen, S. T. Hsu, T. Z. Wu, Surf. Coat. Technol., 123(2-3) 204-209 (2000)
23. A. Hozumi, H. Sekoguchi, N. Kakinoki, O. Takai, J. Mater. Sci., 32 4253-4259 (1997)
24. M. T. Kim, J. Lee, Thin Solid Films, 303 173-179 (1997)
25. C. J. Brinker, R. Sehgal, S. L. Hietala, R. Deshpande, D. M. Smith, D. Loy, C. S. Ashley, J. Membrane Sci., 94 85-102 (1994)
26. T. Yamazaki, Y. Uraoka, T. Fuyuki, Thin Solid Films, 487 26-30 (2005)
27. J. J. Pérez-Bueno, R. Ramírez-Bon, Y. V. Vorobiev, F. Espinoza-Beltrán, J. González-Hernández, Thin Solid Films, 379 57-63 (2000)
28. T. Schmauder, K.-D. Nauenburg, K. Kruse, G. Ickes, Thin Solid Films, 502 270-274 (2006)
29. K. Teshima, H. Sugimura, Y. Inoue, O. Takai, A. Takano, Appl. Surf. Sci., 244 619-622 (2005)
30. K. L. Tan, L. L. Woon, H. K. Wong, E. T. Kang, K. G. Neoh, Macromolecules, 26 2832-2836 (1993)
31. N. Inagaki, S. Tasaka, Y. Goto, J. Appl. Polym. Sci., 66 77-84 (1997)
32. C. M. Chan, T. M. Ko, H. Hiraoka, Surf. Sci. Rep., 24 1-54 (1996)
33. 洪昭南、郭有斌,化工技術,第81期 190-204 (1999)
34. A. Schütze, J. Y. Jeong, S. E. Babayan, J. Park, G. S. Selwyn, R. F. Hicks, IEEE Trans. Plasma Sci., 26(6) 1685-1694 (1998)
35. 劉志宏、黃駿、許文通、蔡禎輝、張所鋐,機械工業雜誌,第306期 66-75 (2008)
36. 楊士賢,中原大學化學工程學系碩士論文 (2005)
37. 柯賢文,表面與薄膜處理技術,全華圖書股份有限公司 (2007)
38. 莊達人,VLSI製造技術,高立圖書有限公司 (2006)
39. A. Kuwabara, S.-I. Kuroda, H. Kubota, Plasma Sources Sci. Technol., 15 328-331 (2006)
40. S. E. Babayan, J. Y. Jeong, V. J. Tu, J. Park, G. S. Selwyn, R. F. Hicks, Plasma Sources Sci. Technol., 7 286-288 (1998)
41. G. R. Nowling, M. Yajima, S. E. Babayan, M. Moravej, X. Yang, W. Hoffman, R. F. Hicks, Plasma Sources Sci. Technol., 14 477-484 (2005)
42. V. Raballand, J. Benedikt, A. V. Keudell, Appl. Phys. Lett., 92 091502 (2008)
43. Y. M. Chung, M. J. Jung, M. W. Lee, J. G. Han, Surf. Coat. Technol., 174-175 1038-1042 (2003)
44. M. C. Kim, D. K. Song, H. S. Shin, S.-H. Baeg, G. S. Kim, J.-H. Boo, J. G. Han, S. H. Yang, Surf. Coat. Technol., 171 312-316 (2003)
45. D. H. Shin, C. U. Bang, J. H. Kim, K. H. Han, Y. C. Hong, H. S. Uhm, D. K. Park, K. H. Kim, Surf. Coat. Technol., 201 4939-4942 (2007)
46. M. H. Han, J. P. Jegal, K. W. Park, J. H. Choi, H. K. Baik, J. H. Noh, K. M. Song, Y. S. Lim, Surf. Coat. Technol., 201 4948-4952 (2007)
47. M. Andrieux, J. M. Badie, M. Ducarroir, L. Thomas, Ann. Chim. Sci. Mat., 23 743-752 (1998)
48. B.-O. Cho, S. Lao, L. Sha, J. P. Chang, J. Vac. Sci. Technol. A, 19 2751-2761 (2001)
49. N. Benissad, C. Boissue-Laporte, C. Vallée, A. Granier, A. Goullet, Surf. Coat. Technol., 116-119 868-873 (1999)
50. L. Thomas, L. Maillé, J. M. Badie, M. Ducarroir, Surf. Coat. Technol., 142-144 314-320 (2001)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊