跳到主要內容

臺灣博碩士論文加值系統

(35.172.223.30) 您好!臺灣時間:2021/07/25 11:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李坤禹
研究生(外文):Kun-Yu Li
論文名稱:高嶺土/二氧化矽奈米零價鐵複合材料之製備、特性鑑定及其處理鈷/銅/鉻廢水之研究
論文名稱(外文):Synthesis and Characterization of Kaolinite / Silica and Zero-valent Iron Nanocomposites for Remediation of Cobalt, Copper, and Chromium-contaminated Wastewaters
指導教授:林錕松
指導教授(外文):Kuen-Song Lin
學位類別:碩士
校院名稱:元智大學
系所名稱:化學工程與材料科學學系
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:232
中文關鍵詞:奈米零價鐵高嶺土二氧化矽重金屬包覆吸附還原奈米複合材料
外文關鍵詞:Zero-valent iron nanoparticleKaoliniteSilicaHeavy metalCoatingAdsorptionReductionNanocomposite.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:314
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要目的乃為探討改質之奈米零價鐵之製備及其處理鈷、鉻及銅廢水之效率,實驗部份分為奈米零價鐵與高嶺土合成出複合材料SiO2包覆於奈米零價鐵表面進行改質;合成高嶺土/奈米複合材料為利用高嶺土與硫酸亞鐵溶液於適當比例混合,在利用化學還原法製備合成出複合材料,並以四乙氧基矽烷(TEOS)為前驅物合成SiO2包覆奈米零價鐵,另以貴重儀器鑑定其表面形貌與化學結構,比較不同表面改質特性對處理鈷、鉻及銅廢水的效率及可能的反應機制。
由場發掃描式電子顯微鏡(FE-SEM)分析可知,經高嶺土摻雜於奈米零價鐵之複合材料,顯示團聚現象已明顯改善;經穿透式電子顯微鏡(TEM)分析結果顯示,可觀察單顆奈米零價鐵平均分散吸附於高嶺土表面,減少奈米零價鐵團聚情形。由X光繞射儀(XRD)分析結果可知,在2θ = 44.5°及64.62°為零價鐵之特徵峰,在2θ = 24.88、35.9、38.52、54.94及70.08°為高嶺土之特徵峰,符合鐵標準品及高嶺土之圖譜,並經化學分析電子光譜儀(ESCA)分析可知,表面以Fe及α-FeOOH為主,且α-FeOOH含量較多,高嶺土改質前後之奈米零價鐵比表面積分別為13.68及14.81 m2/g,且孔徑分布更均勻,可知改質奈米零價鐵表面積增加、分散性更佳。使用介面電位移分析,其改質前後等電位點(IEP)分別為7.7及6,較未改質奈米零價鐵更能分散及吸附陽離子金屬污染物。
以TEOS為SiO2的前驅物,製備SiO2包覆奈米零價鐵,由TEM分析可知,核心的奈米零價鐵外層包覆5-10 nm雲狀具孔洞之SiO2薄層,核心粒徑大小約50 nm,並未出現明顯團聚的現象,且包覆亦較均勻。以FE-SEM分析可知,包覆SiO2之奈米零價鐵外觀十分粗糙且有團聚成大小不一的塊狀結構,且無法觀察到內部粒子,與未包覆前的顆粒狀圓球明顯不同。以XRD分析可知,在2θ =44.96及65.36°為零價鐵的特徵峰,於22°出現其寬胖之特徵峰,其為包覆奈米零價鐵外層之無晶形SiO2。
改質前後奈米零價鐵粉與Co(II)、Cu(II)及Cr(VI)進行還原反應實驗中,由原子吸收光譜(AAS)數據結果顯示改質前後零價鐵可以有效地完全去除鈷、銅及鉻污染廢水,且改質後處理效果提高,由反應動力結果顯示奈米零價鐵對於污染物溶液為擬一階反應(pseudo-first-order),處理鈷、銅及鉻污染廢水濃度越低,則吸附方程式越趨近線性。由FE-SEM及XRD結果顯示反應後之奈米零價鐵粉微粒表面可能為紅褐色氧化鐵,結構成鬆散狀,經ESCA及XRD鑑定其氧化鐵為Fe3O4及α-FeOOH。吸附鉻之奈米零價鐵粉經由X光吸收近邊緣結構(XANES)及延伸X光吸收精細結構(EXAFS)光譜顯示,吸附Cr(VI)之奈米零價鐵粉微粒上之鉻還原成Cr(III),及第一層Cr-O之配位數為3.61,鍵長為1.98 Å,結果與Cr(III)相近。
The main objectives of the present study were to prepare surface-modified zero-valent iron nanoparticles (SMZVINs) for the remediation of cobalt, copper and chromium ions from wastewater. Experimentally, synthesis of the material, identification and application to treat cobalt, copper and chromium contaminated wastewater were conducted. SMZVINs were prepared using kaolinite clay and coating silica nanofilms. The synthesized kaolinite supported zero valent iron nanoparticles was mixed with iron(II) sulfate heptahydrate in same mass ratio of kaolinite, after using the borohydride reduction method at room temperature and ambient pressure. Tetraethoxysilane (TEOS) was used as the precursors to synthesize SiO2/zero-valent iron nanocomposites for coating. Characterization of kaolinite /Fe(0) and SiO2/Fe(0) reacted with Co(II), Cu(II), and Cr(VI) contaminated wastewater were also investigated by TEM, FESEM, XRD, XPS, FTIR, BET N2 isotherms, and XANES/EXAFS techniques. In addition, this study was also carried out to provide information concerning the removal efficiencies and mechanism in the chemical reductive treatment processes for Co(II), Cu(II), and Cr(VI) wastewaters.
By FE-SEM and TEM analyses, The presence of kaolinite resulted in decreased aggregation of zero-valent iron nanoparticles, yielding composites with a iso-electric point (IEP) of 6. Kaolinite/Fe(0) has characteristic peaks of kaolinite and Fe(0) at 2θ = 24.88, 35.9, 38.52, 54.94, 70.08°, and 2θ = 44.5 and 64.62°, respectively analyzed by XRD. The surface area measured by BET N2 isotherms was 17 m2/g. From ESCA spectra, the main species on the surface of kaolinite/Fe(0) nanoparticles were Fe and α-FeOOH.
By using a TEOS as the precursor, SiO2/Fe(0) nanocomposites were synthesized. From TEM and SEM analyses, the core of SiO2/Fe(0) nanocomposite has a diameter around 50 nm and the shell of SiO2/Fe(0) nanocomposites relatively looses and possesses aperture structure. SiO2/Fe(0) nanocomposites have characteristic peaks of SiO2 and Fe(0) at 2θ = 22° and 2θ = 44.96° and 65.36° respectively analyzed by X-Ray diffraction.
SMZVINs reacted with Co(II), Cu(II), and Cr(VI) solutions and the concentrations of solutions determined by AAS decreased with increasing reaction times. Kinetics analyses from batch studies revealed that the removal of Co(II), Cu(II), and Cr(VI) from aqueous reaction with SMZVINs appeared to be a pseudo first-order with respect to metal contaminants. Metal-adsorbed Fe(0) nanoparticles were observed using FE-SEM and XRD and the comparison was found abnormally. It was possible that parts of Fe(0) nanoparticles were oxidized in the adsorption process. This study exemplifies the utilization of XRD and XPS to reveal the speciation and possible reaction pathway in a very complex adsorption and redox reaction process. Moreover, XANES spectra and EXAFS data also showed that Cr(VI) reduced to Cr(III). The Cr atoms in SMZVINs have the first shell of Cr-O bonding with a bond distance of 1.98 Å and a coordination number of 3.61.
目 錄
頁次
摘 要 II
ABSTRACT IV
誌 謝 VI
目 錄 I
圖 目 錄 VI
表 目 錄 XV
第一章 前言 1
第二章 文獻回顧 4
2.1 含鈷離子廢水簡介 4
2.1.1 鈷污染來源 4
2.1.2 鈷的簡介 7
2.1.3 鈷的污染危害 9
2.1.4 放射性鈷物質對生態環境之影響 10
2.2 鉻污染現況 13
2.2.1 鉻污染來源 13
2.2.2 鉻之性質 14
2.2.3 鉻污染危害 16
2.3 銅廢水簡介 18
2.3.1 銅污染來源 18
2.3.2 銅的簡介 19
2.3.3 銅對人體的作用 21
2.4 零價鐵處理技術簡介 22
2.4.1 奈米微粒 22
2.4.2 奈米材料性質 23
2.4.3 奈米粒子的表面效應 24
2.4.4 奈米鐵粒子的製備 28
2.4.5 奈米材料和技術的應用前景 32
2.4.6 鐵物質之簡介 34
2.4.7 奈米零價鐵之性質 37
2.4.8 奈米零價鐵之應用 41
2.4.9 電子轉移過程 49
2.5粒子表面改質及分散 53
2.5.1 改質與分散 53
2.5.2 核-殼結構複合材料簡介 54
2.5.3 分形理論 55
2.5.4 化學法分散奈米粉體 56
2.5.5 介面電位 59
2.6 磁性光觸媒之簡介 61
2.6.1 磁性光觸媒的製備 62
第三章 實驗方法與分析 67
3.1 實驗藥品 67
3.2 實驗儀器 68
3.3 實驗步驟 69
3.3.1 奈米零價鐵合成與改質 69
3.3.2 Fe(0)加入高嶺土實驗 71
3.3.3 以TEOS為前驅物合成SiO2/Fe(0)實驗 72
3.3.4 以TBT為前驅物合成TiO2/Fe(0)實驗 75
3.3.4 以TBT為前驅物合成TiO2/Fe(0)實驗 75
3.3.5 奈米零價鐵處理鈷、銅及鉻廢水實驗 77
3.4 分析方法 78
3.4.1 穿透式電子顯微鏡 78
3.4.2 場發掃描式電子顯微鏡 80
3.4.3 X光粉末繞射儀 82
3.4.4 界面電位儀 84
3.4.5 化學分析電子光譜儀 86
3.4.6 比表面積 88
3.4.7 同步輻射吸收光譜 90
3.4.8 原子吸收光譜 94
第四章 結果與討論 96
4.1 奈米零價鐵/高嶺土複合材料之合成 96
4.1.1 奈米零價鐵/高嶺土複合材料之晶相及表面分析 99
4.1.2 奈米零價鐵/高嶺土複合材料之比表面積及孔洞分析 111
4.2二氧化矽包覆奈米零價鐵之合成 115
4.2.1 SiO2/Fe(0)之晶相及外觀分析 116
4.2.2 二氧化矽包覆奈米零價鐵之比表面積及孔洞分析 125
4.3二氧化鈦包覆奈米零價鐵之合成 127
4.3.1 TiO2/Fe(0)之晶相及外觀分析 129
4.3.2 二氧化鈦包覆奈米零價鐵之比表面積及孔洞分析 141
4.4 Fe(0)、高嶺土/Fe(0)及SiO2/Fe(0)處理含鈷、銅及鉻廢水之分析 143
4.4.1 Fe(0)、高嶺土/Fe(0)及SiO2/Fe(0)處理含鈷、銅及鉻廢水實驗 143
4.4.2奈米零價鐵重複處理含鈷、銅及鉻廢水之實驗 155
4.4.3 改質前後奈米零價鐵處理含鈷廢水之pH、DO及ORP變化探討 157
4.4.4 Fe(0)、高嶺土/Fe(0)及SiO2/Fe(0)處理含鈷、銅及鉻廢水之表面分析 161
4.5 X光吸收邊緣結構性質分析 174
4.5.1 延伸細微結構X光吸收光譜性質分析 176
5.1 結論 178
5.2 未來研究方向 183
參考文獻 184
附錄A 199
1.Fujishima A. and Honda K., Electrochemical photolysis of water at a semiconductor electrode, Nature, 238(5358), 37-38 (1972).
2.Massart R., Preparation of aqueous magetic liquids in alkaline and acidic media, IEEE Trans. Magn., 17(5), 1247-1253 (1981).
3.Du G.H., Liu Z.L., Xia X., Chu Q., and Zhang S.M., Characterization and application of Fe3O4/SiO2 nanocomposites, J. Sol-Gel Sci. Technol., 39 (3), 285-291 (2006).
4.Zheng T., Zhan J., He J., Day C., Lu Y., Mcpherson G.L., Piringer G., and John V.T., Reactivity characteristics of nanoscale zerovalent iron-silica composites for trichloroethylene remediation, Environ. Technol., 42(12), 4494-4499 (2008).
5.Üzüm C., Shahwan T., Eroglu A.E., Lieberwirth I., Scott T.B. and Hallam K.R., Synthesis and characterization of kaolinite-supported zero-valent iron nanoparticles and their application for the removal of aqueous Cu2+ and Co2+ ions, Appl. Clay Sci., 43(2), 172-181 (2008).
6.Bhattacharyya K.G., and Gupta S.S., Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: A review, Adv. Colloid Interface Sci., 140(2), 114-131 (2008).
7.Gál J., Hursthouse A., Tatner P., Stewart F. and Welton R., Cobalt and secondary poisoning in the terrestrial food chain: Data review and research gaps to support risk assessment, Environ. Intl., 34, 821-838 (2008).
8.American Nuclear Society, Liquid radwaste waste processing system for light water reactor plants, ANSI/ANS-55.6 (1993).
9.劉東山、蔡昭明,「放射性廢料管理」,放射性待處理物料管理處,曉圓出版社(1992)。
10.林春輝,「光復科技百科全書」,光復書局股份有限公司(1991)。
11.Syracuse Research Corporation Under Contract No. 205-1999-00024, Toxicological profile for cobalt, U.S. Dept. of Health and Human services, Public Health Service, Agency for Toxic Substances and Disease Registry (2001).
12.Nriagu J. Q., and Nieboer E., Chromium in Natural and Human Environments, Wiley Interscience, New York (1988).
13.Stein K. and Schwedt G., Chromium speciation in the wastewater from a tannery, Fresen. J. Anal. Chem., 350, 38-41 (1994).
14.Walsh A. R., and O’Halloran J., Chromium speciation in tannery effluent—I. An assessment of techniques and role of organic Cr(III) complexes, Water Res., 30(10), 2393-2400 (1996).
15.Walsh A. R., and O’Halloran J., Chromium speciation in tannery effluent—II. Speciation in effluent and in a receiving estuary, Water Res., 30(10), 2401-2412 (1996).
16.林敬二、楊美惠、楊寶旺、廖德章、薛敬和,「英•中•日 化學大辭典」,高立圖書公司(1993)。
17.Campanella L., Problems of speciation of elements in natural water: the case of chromium and selenium, In: Caroli S., Element Speciation in Bioinorganic Chemistry, Wiley Interscience, New York, 419-444 (1996).
18.Nieboer E., and Jusys A. A., Biologic chemistry of chromium, In: Nriagu J., O., and Nieboer E., Chromium in Natural and Human Environments, Wiley Interscience, New York, 21-81 (1988).
19.Anderson R. A., Essentiality of chromium in humans, Sci. Total Environ., 86(1-2), 75-81 (1989).
20.Gad C. S., Acute and chromium toxicity, Sci. Total Environ., 86(1-2), 149-157 (1989).
21.Lee K. P., Ulrich C. E., Geil R. G., and Trochimowicz H. J., Inhalation toxicity of chromium dioxide dust to rats after two years exposure, Sci. Total Environ., 86(1-2), 83-108 (1989).
22.馬振基,「奈米材料科技原理與應用」,全華科技圖書公司(2003)。
23.張立德、牟季美,「奈米材料和奈米結構」,滄海書局(2002)。
24.郭正次、朝春光,「奈米結構材料科學」,全華科技圖書公司(2004)。
25.黃惠忠,「奈米材料分析」,滄海書局(2004)。
26.林正良,「化學工業科技人才培訓計畫—介面化學工業技術人才培訓:電子科技用介面化學應用原理(一)」,經濟部工業局(2002)。
27.魏明芬,「磁性金屬氧化物奈米粒的製備與鑑定」,碩士論文,國立中正大學化學研究所(2002)。
28.Choa Y. C., Nakayama T., Sekino T., and Niihara K., Synthesis and mechanical/magnetic properties of nano-grained iron-oxide prepared with an inert gas condensation and pulse electric current sintering process, Matals Mater., 5(2), 135-139 (1999).
29.Nakayama T., Choa Y. H.,Yamamoto T. A., and Niihara K., Nanocrystalline iron oxide manufactured by IGC-PECS process, Funtai oyobi Funmatsu Yakin, 45(12), 1207-1210 (1998).
30.Wang Z. B., Wang X. Y., Zhang J. H., and Xu Z. Y., Internal friction of nanograined Fe-25% Ni alloy bulk, Jinsbu Xuebao, 40(1), 523-526 (2004).
31.Gleiter H., Nanocrystalline materials, Prog. Mater. Sci., 33(4), 223-315 (1989).
32.Sus-Ryszkowska M., Wejrzanowski T., Pakiela Z., and Kurzydlowski K. J., Microstructure of ECAP severely deformed iron and its mechanical properties, Mater. Sci. Eng., A369(1-2), 151-156 (2004).
33.Valiev R. Z., Islamgaliev R. K., and Alexandrov I. V., Bulk nanostructured materials from severe plastic deformation, Prog. Mater. Sci., 45(2), 103-189 (2000).
34.Li L., Fan M. H., Brown R. C., Van-Leeuwen J. H., Wang J. J., Wang W. H., Song Y. H., and Zhang P. Y., Synthesis, properties, and environmental applications of nanoscale iron-Based materials: A review, Crit. Rev. Environ. Sci. Technol., 36(5), 305-431 (2006).
35.Dallimore M. P., Mechanochemical processing-A versatile, low cost technology for the manufacture of nano-powders, Mater. Technol., 14(4), 4-15 (1999).
36.Del Bianco L., Hernando A., Navarro E., and Pasquini L., Structural configuration and magnetic effects in as-milled and annealed nanocrystalline, J. Phys. IV Proc., 8(2), 107-110 (1998).
37.Malow T. R., Koch C. C., Miraglia P. Q., and Murty K. L., Compressive mechanical behavior of nanocrystalline Fe investigated with an automated ball indentation technique, Mater. Sci. Eng., A252(1), 36-43 (1998).
38.Tao N. R., Sui M. L., Lu J., and Lu K., Surface nanocrystallization of iron induced by ultrasonic shot peening, Nano Struc. Mater., 11(4), 433-440 (2004).
39.Carpenter E. E., Iron nanoparticles as potential magnetic carriers, J. Magn. Magn. Mater., 225(1-2), 17-20, (2001).
40.Wiggins J., Carpenter E. E., and O’Connor, C. J., Phenomenological magnetic modeling of Au:Fe:Au nano-onions, J. Appl. Phys., 87(9), 5651-5653 (2000).
41.Li F., Vipulanandan C., and Mohanty K. K., Microemulsion and solution approaches to nanoparticle iron production for degradation of trichloroethylene, Colloid surf. A:Physicochem. Eng., 223(1-3), 103-112 (2003).
42.Song G. P., Bo J., and Guo R., The characterization and property of polystyrene compounding of α-Fe2O3 in the nano-scale, Colloid Polym. Sci., 282(6), 656-660 (2004).
43.Liu Z. L., Wang H. B., Lu Q. H., Du G. H., Peng L., Du Y. Q., Zhang S. M., and Yao K. L., Synthesis and characterization of ultrafine well-dispersed magnetic nanoparticles, J. Magn. Mater., 283(2-3), 258-262 (2004).
44.Jiang W. Q., Yang H. C., Yang S. Y., Horng H. E., Hung J. C., Chen Y. C., and Hong C. Y., Preparation and properties of superparamagnetic nanoparticles with narrow size distribution and biocompatible, J. Magn. Mater., 283(2-3), 210-114 (2004).
45.Kim D. K., Zhang Y., Voit W., Rao K. V., Kehr J., Bjelke B., and Muhammed M., Superparamagnetic iron oxid nanoparticles for bio-medical applications, Scripta Mater., 44(8-9), 1713-1717 (2001).
46.Wang Z. H., Choi C. J., Kim B. K., Kim J. C., and Zhang Z. D., Microstructure and magnetic property of Fe-Co nanoparticles prepared by chemical vapor condensation process, J. Alloys Compounds, 351(1-2), 319-323 (2003).
47.Choi C. J., Dong X. L., and Kim B. K., Characterization of Fe and Co nanoparticles synthesized by chemical vapor condensation, Scripta Mater, 44(8-9), 2225-2229 (2001).
48.Choi C. J., Dong X. L., and Kim B. K., Microstructure and magnetic properties of Fe nanoparticles synthesized by chemical vapor condensation, Mater. Trans., 42(10), 2046-1049 (2001).
49.Natter H., Schmelzer M., Loffler M. S., Krill C. E., Fitch A., and Hempelmann R., Grain-growth kinetics of nanocrystalline iron studied in situ by synchrotron real-time X-ray diffraction, J. Phys. Chem., B104(11), 2467-1476 (2000).
50.Makela J. M., Keskinea H., Forsblom T., and Keskinen J., Generation of metal and metal oxide nanoparticles by liquid flame spray process, J. Mater. Sci., 39(8), 2783-2788 (2004).
51.Choe S., Chang Y. Y., Hwang K. Y., and Khim J., Kinetics of reductive denitrification by nanoscale zero-valent iron, Chemosphere, 41(8), 1307-1311 (2000).
52.Elliott D. W., and Zhang W. X., Field assessment of nanoscale bimetallic particles for groundwater treatment, Environ. Sci. Technol., 35(24), 4922-4926 (2001).
53.Kanel S. R., Manning B., Charlet L., and Choi H., Removal of arsenic(III) from groundwater by nanoscale zero-valent iron, Environ. Sci. Technol., 39(5), 1291-1298 (2005).
54.Liu Y. Q., Majetich S. A., Tilton R. D., Sholl D. S., and Lowry G. V., TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties, Environ. Sci. Technol., 39(5), 1338-1345 (2005).
55.Glavee G. N., Klabunde K. J., Sorensen C., and Hadjipanayis G. C., Chemistry of borohydride reduction of iron(II) anf iron(III) ions in aqueous and nonaqueous media. Formation of nanoscale Fe, FeB and Fe2B powders, Inorg. Chem., 34(1), 28-35 (1995).
56.Uegami M., Kawano J., Kakuya K., Okita T., and Okinaka K., Iron composite particles for purifying soil or groundwater, Toda kogyo Corporation, (2004).
57.溫明鏡,「氧化鐵磁性奈米粒子之合成與特性研究」,碩士論文,國立中正大學物理研究所(2003)。
58.鄭景軒,「磁性奈米微粒之二氧化矽被覆技術之研究」,碩士論文,國立成功大學機械工程研究所(2003)。
59.Nurmi J. T., Tratnyek P. G., Sarathy V., Baer D. R., and Amonette J. E., Characterization and properties of metallic iron nanoparticles: Spectroscopy, electrochemistry, and kinetics, Environ. Sci. Technol., 39(5), 1221-1230 (2005).
60.Chang Y. C., and Chen D. H., Preparation and adsorption properties of monodisperse chitosan-bound Fe3O4 magnetic nanoparticles for removal of Cu(II) ions, J. Colloid and Interface Sci., 283(2), 446-451 (2005).
61.Sudaker C., and Kutty T. R. N., Structural and magnetic characteristics of cobalt ferrite-coated nano-fibrous γ-Fe2O3, J. Magn. Magn. Mater., 279(2-3), 363-274 (2004).
62.Teng X. W., and Yang H., Synthesis of face-centered tetragonal FePt nanoparticles and granular films from Pt- Fe2O3 core-shell nanoparticles, J. Am. Chem. Soc., 125(47), 14559-14563 (2003).
63.Ponder S. M., Darab J. G., Bucher J., Caulder D., Craig I., Davies L., Edelstein N., Lukens W., Nitsche H., Rao L. F., Shuh D. K., and Mallouk T. E., Surface chemistry and electrochemistry of supported zerovalent iron nanoparticles in the remediation of aqueous metal contaminants, Chem. Mater., 13(2), 479-486 (2001).
64.Bokhonov B., and Korchagin M., The formation of graphite encapsulated metal nanoparticles during mechanical activation and annealing of soot with iron and nickel, J. Alloys Compounds, 333(1-2), 308-320 (2002).
65.Baker C., Hasanain S. K., and Shah S. I., The magnetic behavior of iron oxide passivated iron nanoparticles, J. Appl. Phys., 96(11), 6657-6662 (2004).
66.Lowry G. V., and Johnson K. M., Congener-specific dechlorination of dissolved PCBs by microscale and nanoscale zero valent iron in water/methanol solution, Environ. Sci. Technol., 38(19), 5208-5216 (2004).
67.Signorini L., Pasquini L., Savini L., Carboni R., Boscherini F., Bonetti E., Giglia A., Pedio M., Mahne N., and Nannarone S., Size-dependent oxidation in iron/iron oxide core-shell nanoparticles, Phys. Rev., B68(19), 195423- 1954238 (2003).
68.Ponder S. M., Darab J. G., and Mallouk T. E., Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zero-valent iron, Environ. Sci. Technol., 34(12), 2564-2569 (2000).
69.Reetz M. T. and Helbig W., Size-selective synthesis of nanostructured transition metal cluster, J. Am. Chem. Soc., 116(16), 7401-7402 (1994).
70.Zhang P. J., Simunek J., and Bowman R. S., Nonideal transport of solute and colloidal tracers through reactive zeolite/iron pellets, Water Resou. Res., 40(4), 42071-420711 (2004).
71.Signoretti S., Del Bianco L., Pasquini, L., Matteucci G., Beeli C. and Bonetti E., Electron holography of gas-phase condensed Fe nanoparticles, J. Magn. Magn. Mater., 262(1), 142-145 (2003).
72.Lien H. L. and Zhang W. X., Transformation of chlorinated methanes by nanoscale iron particles, J. Environ. Eng., 125(11), 1042-1047 (1999).
73.Kecskes L. J. and Woodman R. H., Effect of powder characteristics on the sinterability of microwave-plasma-synthesized iron nanopowders, Scripta Mater., 48(8), 1041-`1046 (2003).
74.Zhang W. X., Wang C. B. and Lien H. L., Treatment of chlorinated organic contaminants with nanoscale bimetallic particles, Catalysis Today, 40(4), 387-395 (1998).
75.Xu Y. and Zhang W. X., Subcolloidal Fe/Ag particles for reductive dehalogenation of chlorinated benzenes, Ind. Eng. Chem. Res., 39(7),2238-2244 (2000).
76.Schrick B., Blough J. L., Jones A. D. and Mallouk T. E., Hydrodechlorination of trichloroethylene to hydrocarbons using bimetallic nickel-iron nanoparticles, Chem. Mater., 14(12), 5140-5147 (2002).
77.Zhang W. X., Nanoscale iron particles for environmental remediation: An overview, J. Nanoparticle Res., 5(3-4), 323-332 (2003).
78.Wang C. B., and Zhang W. X., Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs, Environ. Sci. Technol., 31(7), 2154-2156 (1997).
79.Lien H. L. and Zhang W., Nanoscale iron particles for complete reduction of chlorinated ethenes, Colloid Surface A., 191(1-2), 97-105 (2001).
80.Üzüm C., Shahwan T., Eroglu A.E., Lieberwirth I., Scott T.B. and Hallam K.R., Application of zero-valent iron nanoparticles for the removal of aqueous Co2+ ions under various experimental conditions, Chem. Eng. J., 144(2), 213-220 (2008).
81.Palmer C. D., and Puls R. W., Natural attenuation of hexavalent chromium in groundwater and soils, U.S. EPA Ground Water Issue, EPA/540/S-94/505 (1994).
82.Puls R. and Paul C., Low flow purging and sampling of groundwater monitoring wells with dedicated systems, Ground Water Monit. R., 28(7), 116-123 (1995).
83.Blowes D. W., Ptacek C. J., and Jambor J. L, In-Situ remediation of chromate contaminated groundwater using permeable reactive walls, Environ. Sci. Technol., 31(12), 3348-3357 (1997).
84.Blowes D. W., Puls R. W., Bennett T. A., Gillham R. W., Hanton-Fong C. J., and Ptacek C. J., In-situ porous reactive wall for treatment of Cr(VI) and trichloroethylene in groundwater, International Containment Technology Conference and Exhibition, St. Petersburg, Florida, February 9-12 (1997).
85.Pratt A. R., Blowes D. W., and Ptacek C. J., Products of chromate reduction on proposed remediation material, Environ. Sci. Technol., 31(9), 2492-2498 (1997).
86.Xie L., Shang C., Effects of copper and palladium on the reduction of bromate by Fe(0), Chemosphere, 64(6), 919-930 (2006).
87.Sun Y.-P., Li X.-q., Cao J., Zhang W.-x., and Wang H.P., Characterization of zero-valent iron nanoparticles, Adv. Colloid Interface Sci., 120(1-3), 47-56 (2006).
88.Dixit S. and Hering J. G. Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: implications for arsenic mobility, Environ. Sci. Technol., 37(18), 4182-4189 (2003).
89.Karabelli D., CağriÜ., Shahwan T., Eroğlu A.E., Scott T.B., Hallam K.R. and Lieberwirth I., Batch removal of aqueous Cu2+ ions using nanoparticles of zero-valent iron: A study of the capacity and mechanism of uptake, Ind. Eng. Chem. Prod. Res. Dev., 47(14), 4758-4764 (2008).
90.Mondal K., Jegadeesan G. and Lelvani S. B., Removal of selenate by Fe and NiFe nanosized particles, Ind. Eng. Chem. Res., 43(16), 4922-4934 (2004).
91.He P. and Zhao D. Y., Preparation and characterization of a new class of starch-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water, Environ. Sci. Technol., 39(9), 3314-3320 (2005).
92.Matheson L. J. and Tratnyek P. G., Reductive dehalogenation of chlorinated methanes by iron metal, Environ. Sci. Technol., 28(12), 2045-2053 (1994).
93.Rivero M. and Marshall W.D., Reduction of hexavalent chromium mediated by micro- and nano-sized mixed metallic particles, J. Hazard. Mater., 169(1-3), 1081-1087 (2009).
94.Dong L., Zinin P.V., Cowen J.P., and Ming L.C., Iron coated pottery granules for arsenic removal from drinking water, J. Hazard. Mater., 168(2-3), 626-632 (2009).
95.Triszcz J.M., Porta A., and Einschlag, F.S.G., Effect of operating conditions on iron corrosion rates in zero-valent iron systems for arsenic removal, Chem. Eng. J., 150(2-3), 431-439 (2009).
96.Wang Z., Peng P., and Huang W., Dechlorination of γ-hexachlorocyclohexane by zero-valent metallic iron, J. Hazard. Mater. , 166(2-3), 992-997 (2009).
97.Zhang X., Lin Y.-m., and Chen, Z.l., 2,4,6-Trinitrotoluene reduction kinetics in aqueous solution using nanoscale zero-valent iron, J. Hazard. Mater. , 165(1-3), 923-927 (2009).
98.Zhu H. J., Jia Y. F., Wu X., and Wang H., Removal of arsenite from drinking water by activated carbon supported nano zero-valent iron, Environ. Sci., 30(6), 1644-1648 (2009).
99.Zhang Y., Amrhein C., Chang A., and Frankenberger Jr. W.T., Effect of zero-valent iron and a redox mediator on removal of selenium in agricultural drainage water, Sci. Total Environ., 407(1), 89-96 (2008).
100.Thomas J. M., Hernandez R., and Kuo C. H., Single-step treatment of 2,4-dinitrotoluene via zero-valent metal reduction and chemical oxidation, J. Hazard. Mater., 155(1-2), 193-198 (2008).
101.Cheng C. Y., Chen S. S., Tang C. H., Chang Y. M., Cheng H. H., and Liu H. L., High temperature fluidized bed zero valent iron process for flue gas nitrogen monoxide removal, J. Environ. Eng. Sci., 7(3), 165-173 (2008).
102.Shin K.-H. and Cha D.K., Microbial reduction of nitrate in the presence of nanoscale zero-valent iron, Chemosphere, 72(2), 257-262 (2008).
103.高濂、孫靜、劉陽橋,「奈米粉體的分散及表面改性」,五南圖書出版股份有限公司(2005)。
104.張德光,「結合鈀化奈米鐵粉懸浮液與電動力法處理地下環境介質中之三氯乙烯」,碩士論文,國立中山大學環境工程研究所(2005)。
105.Bourlinos A. B., Bakandritsos A., Georbakilas V., and Petridis D., Surface modification of ultrafine magnetic iron oxide particles, Chem. Mater., 14(8), 3226-3228 (2002).
106.Quinn J., Geiger C., Clausen C., Brook K., and Coon C., Field demonstration of DNAPL dehalogenation using emulsified zero-valent iron, Environ. Sci. Technol., 39(5), 1309-1318 (2005).
107.Sidorov S. N., Bronstein L. M., Valetsky P. M., Hartmann J., Colfen H., and Schnablegger H., Stabilization of metal nanoparticles in aqueous medium by polyethyleneoxide-polyethyleneimine block copolymers, J. Colloid Interf. Sci., 212(2), 197-202 (1999).
108.Moeser G. D., Roach K. A., Green W. H., Laibinis P. E., and Hatton T. A.,Water-based magnetic fluids as extractants for synthetic organic compounds, Ind. Eng. Chem. Res., 41(19), 4739-4745 (2002).
109.張有義、郭蘭生,「膠體及界面化學入門」,高立圖書有限公司(2001)。
110.Pozzo R. L., Baltanas M. A., and Cassano A. E., Supported titanium oxide as photocatalyst in water decontamination: State of the art, Catal. Today, 39(3), 219-231 (1997).
111.Beydoun D. and Amal R., Novel Photocatalyst: Titania-Coated Magnetite. Activity and Photodissolution, J. Phys. Chem. B, 104(14), 4387-4396 (2000).
112.Beydoun D. and Amal R., Implications of heat treatment on the properties of a magnetic iron oxide-titanium dioxide photocatalyst, Mat. Sci. Eng. B-solid, 94(1), 71-81 (2002).
113.Watson S., Beydoun D., and Amal R., Synthesis of a novel magnetic photocatalyst by direct deposition of nanosized TiO2 crystals onto a magnetic core, J. Photoch. Photobio. A., 148(1-3), 303-313 (2002).
114.Lee S. W., Drwiega J., Wu C. Y., Mazyck D., and Sigmund W. M., Anatase TiO2 nanoparticle coating on barium ferrite using titanium bis-ammonium lactato dihydroxide and its use as a magnetic photocatalyst, Chem. Mater., 16(6), 1160-1164 (2004).
115.Ma M., Zhang Y., Li X., Zhang F. H., and Gu N., Synthesis and characterization of titania-coated Mn-Zn ferrite nanoparticles, Colloid. Surface. A, 224(1-3), 207-212 (2003).
116.Fu. W., Yang H., Chang L., Hari-Bala., Li M., and Zou G., Anatase TiO2 nanolayer coating on strontium ferrite, Colloid. Surface. A: Physicochem. Eng., 289(1-3), 47-52 (2006).
117.Gad-Allah T. A., Kato S., Satokawa S., and Kojima T., Role of core diameter and silica content in photocatalytic activity of TiO2/SiO2/Fe3O4 composite, Solid State Sci., 9(8), 737-743 (2007).
118.Hiroshi F., Yukiko H., Michichiro Y., and Shoichi A., Magnetic photocatalyst, J.P. Patent, 6154620 (1994).
119.Chong M.N., Vimonses V., Lei S., Jin B., Chow C. and Saint C., Synthesis and characterisation of novel titania impregnated kaolinite nano-photocatalyst., Microporous Mesoporous Mater., 117(1-2), 233-242 (2009).
120.Choe S., Lee S. H., Chang Y. Y., Hwang K. Y., and Khim J., Rapid reductive destruction of hazardous organic compounds by nanoscale Fe0, Chemosphere, 42(4), 367-372 (2000).
121.Liu Y., Majetich S. A., Tilton R. D., Sholl D. S., and Lowry G. V., TCE Dechlorination rates, pathways and efficiency of nanoscale iron particles with different properties, Environ. Sci. Technol., 39(5), 1338-1345 (2005).
122.Huang Y. H. and Zhang T. C., Effects of dissolved oxygen on formation of corrosion products and concomitant oxygen and nitrate reduction in zero-valent iron systems with or without aqueous Fe2+, Water Res., 39(9), 1751-1760 (2005).
123.Li X.Q. and Zhang W. X., Sequestration of metal cations with zerovalent iron nanoparticles - A study with high resolution x-ray photoelectron spectroscopy (HR-XPS), J. Phys. Chem. C., 111(19), 6939-6946 (2007).
124.Geng B., Jin Z., Li T., and Qi X., Kinetics of hexavalent chromium removal from water by chitosan-Fe0 nanoparticles, Chemosphere, 75(6), 825-830 (2009).
125.王明光、王敏昭編,「實用儀器分析」,合記圖書出版(2003)。
126.Li X.Q., Cao J. and Zhang W. X., Stoichiometry of Cr(VI) immobilization using nanoscale zero valent iron (nZVI): A study with high-resolution X-ray photoelectron spectroscopy (HR-XPS), Ind. Eng. Chem. Res., 47(7), 2131-2139 (2008).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊