跳到主要內容

臺灣博碩士論文加值系統

(3.229.142.104) 您好!臺灣時間:2021/07/27 05:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張朝順
研究生(外文):Chao-Shuen Chang
論文名稱:新穎金屬-有機架構物之特性鑑定及成長機制之研究
論文名稱(外文):Structural Characterization and Growth Mechanism of Novel Metal-organic Frameworks
指導教授:林錕松
學位類別:碩士
校院名稱:元智大學
系所名稱:化學工程與材料科學學系
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:325
中文關鍵詞:金屬-有機架構物MILs儲氫量高比表面積成長機制孔洞材料燃料電池
外文關鍵詞:Metal-organic FrameworkMILsCapacity of Hydrogen StorageHigh Specific Surface AreaGrowth MechanismPorous MaterialFuel Cell
相關次數:
  • 被引用被引用:0
  • 點閱點閱:196
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
由於全球暖化及地球石油儲藏量即將告竭,世界各研究單位正在積極開發新型乾淨之氫能源,以代替石化燃料,但因儲存的問題,使得氫氣的應用性受到相當大的限制。金屬有機架構物(MOFs)是將無機金屬與有機配基搭配鍵結而成的多孔性化合物,具有低密度、高熱穩定性、高比表面積等特性,故具有高氫氣儲存的潛力。因此,本研究之主要目的乃探討MOFs之合成方法、微細結構特性鑑定及其儲氫量之大小,亦藉由XRD、FE-SEM/EDS、TEM、BET、TGA、ESCA或XANES/EXAFS等貴重儀器來進一步的分析確認其成長過程及機制。
實驗部份主要包括利用不同的金屬(Al、Ni或Cr)硝酸鹽類作為合成原料,提供金屬配位中心,並可以連接不同之有機配基;合成反應溫度範圍在120~210℃,於不同的溶劑狀態下反應。所合成之MOFs共六種,分別為MIL-96-Al、MIL-96-In、MIL-96-Ga、MIL-100-Cr、MIL-100-Fe及Ni(HBTC)(4,4’-bipy)•3DMF。由FE-SEM分析結果顯示,MIL-96-Al、MIL-96-In、MIL-96-Ga隨著不同的合成方式,而出現不同的構形,大多以六角型或六角柱為主,且隨著反應物濃度變化,具有不同結晶形狀,分別具有7~20、1~15及20~225 μm的大小;但MIL-100-Cr和MIL-100-Fe的結晶較小,大約為200~600 nm;Ni(HBTC)(4,4’-bipy)•3DMF大小約4~20 μm。最初合成之產物會因含有不純物而不具孔洞性,為了使其產生孔洞性及高比表面積,必須經過高溫煅燒或溶劑清洗之處理程序,以清除孔洞中之有機物雜質而形成孔洞。經過上述處理之MIL-96-Al、MIL-100-Cr、MIL-100-Fe及Ni(HBTC)(4,4’-bipy)•3DMF,可測量出其比表面積分別為782、1960、1400及1155 m2/g;並由吸脫附曲線可知MOFs大多為Types Ι和ΙV,表示孔洞直徑為中孔和微孔的分布。XRD圖譜亦表示MOFs經過化學處理後具有良好之結晶性;EDS分析指出,MOFs成分中含有C、O以及不同金屬的成份;FTIR光譜得知MOFs於波長1400~1700 cm-1之C-O官能基,而在1866~1933 cm-1處會具有一微小波峰,為1,3,5三取代苯基之官能基,及因為水氣造成3000~3500 cm-1處,而有譜線加寬之現象;由TGA分析結果顯示MOFs具有較一般之有機化合物優異之熱穩定性,並可達到200~400℃。此外,亦利用X光吸收邊緣結構光譜(XANES)及延伸X光吸收細微結構光譜(EXAFS),來進一步分析MIL-96-In的精細結構,由XANES分析指出MIL-96-In主要為In(III)的成份;EXAFS數據結果顯示MIL-96-In第一層之In-O鍵結之鍵長為2.13 Å,配位數為2。另以高壓熱重分析儀測量MIL-100-Cr、MIL-100-Fe及Ni(HBTC)(4,4’-bipy)•3DMF在室溫及450 psig下儲氫量分別為0.36 、0.11和0.08 wt%。
Both from the point of view of global warming and from that of the inevitable exhaustion of Earth’s oil reserve, worldwide interest is focused on using a clean burning substitute such as hydrogen in place of fossil fuels. However the storage of hydrogen is one of the most important challenges impeding its practical application. Metal–organic frameworks (MOFs) are a new emerging class of crystalline porous materials, displaying very low density, significant thermal stability and very high surface area. They offer significant opportunities for hydrogen storage. Therefore, the main objectives of present study were to develop and investigate the synthesis methods, fine structural characterization, and capacity of hydrogen storage of MOFs using XRD, FE-SEM/EDS, TEM, BET, TGA, ESCA, and XANES/EXAFS techniques.
Experimentally, MOFs were synthesized with different metal nitrates and in the presence of different solvents combined with different organic linkers, with the reaction temperatures range from 120 to 210℃. These MOFs were named as MIL-96-Al, MIL-96-In, MIL-96-Ga, MIL-100-Cr, MIL-100-Fe, and Ni(HBTC)(4,4’-bipy)•3DMF. The shapes of MIL-96-Al, MIL-96-In, and MIL-96-Ga were hexagon or hexagonal pillar with different reactant concentrations and the particle sizes were 7~20, 1~15, and 20~225 μm, respectively using FE-SEM. MIL-100-Cr and MIL-100-Fe had smaller crystal particles around 200~600 nm. Ni(HBTC)(4,4’-bipy)•3DMF had particle sizes were around 4~20 μm. Since as-synthesized MOFs having many impurities, it may cause low porosity. Therefore the cleaning methods, such as higher calcination temperatures or washing several times with different solvents at warm temperatures, were effective and approved to improve higher specific surface area and porosity. The specific surface area of MIL-96-Al, MIL-100-Cr, MIL-100-Fe, and Ni(HBTC)(4,4’-bipy)•3DMF were 595, 1960, 1400, and 1155 m2/g, respectively. Isothermal adsorption/desorption curves of MOFs were types I and IV, the distribution of pore diameter curves revealed that MOFs were microporous and mesopores materials. The XRD patterns represented that MOFs had well crystallinity after chemical treatment. EDS data indicated that MOFs consist of C, O elements and different kinds of metals. FTIR spectra exhibited vibrational bands in the usual region of 1400~1700 cm-1 for the carboxylic function, 1866~1933 cm-1 for benzene-1,3,5-tricarboxylic acid and 3000~3500 cm-1 for OH- group of these MOFs. TGA curves showed that these MOFs were more stable around 200~400℃ than other organic compounds. XANES/EXAFS spectroscopy was performed to identify the fine structures of MIL-96-In. The XANES spectra indicated that the valence of MIL-96-In was In(III). The EXAFS data also revealed that MIL-96-In had a first shell of In-O bonding with bond distance of 2.13 Å, respectively. The coordination number of MIL-96-In was 2. The hydrogen storage capacity of MIL-100(Cr), MIL-100(Fe), and Ni(HBTC)(4,4’-bipy)•3DMF were 0.36, 0.11, and 0.08 wt% at 450 psig and room temperature by using high-pressure thermogravimetric analysis.
摘要 I
ABSTRACT III
誌 謝 V
圖 目 錄 XII
表 目 錄 XXIX
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的及內容 2
第二章 文獻回顧 4
2.1 氫氣 6
2.1.1 氫氣的特性 6
2.1.2 氫氣的儲存 6
2.2 吸附理論 8
2.2.1 物理吸附 8
2.2.2 化學吸附 9
2.3 儲氫材料介紹 10
2.3.2 金屬氫化物 15
2.3.3 多孔性材料儲氫 16
2.3.3.1 奈米碳管 19
2.3.3.2 其他碳材 21
2.3.3.3 沸石 23
2.3.4 金屬有機架構(MOFs) 25
2.4 有機配位基之簡介 32
2.5 金屬-有機架構之合成 37
2.5.1 水溶液合成法 37
2.5.2 微波合成法 37
2.5.3 水熱合成法 38
2.5.4 迴流合成法 39
2.5.5 電化學合成法 39
2.6 金屬-有機架構之特性與應用 41
2.6.1 分離與吸附特性 42
2.6.2 催化特性 44
2.6.3 離子交換 47
2.6.4 醫藥上的使用 48
2.7 金屬-有機架構之儲氫應用與發展 50
2.7.1 MOFs之儲氫特性 50
2.7.2 儲氫機制 55
2.7.3 提升MOFs儲氫量之結構設計 61
2.7.4 MOFs儲氫之改質 66
2.7.4.1液流法 66
2.7.4.2摻雜鋰金屬 70
2.7.5 MOFs儲氫量之測量 72
2.7.5.1 重量法之儲氫量計算 73
2.7.5.2 體積法之儲氫量計算 75
第三章 實驗設備及方法 77
3.1 實驗藥品 77
3.2 實驗儀器 80
3.3 金屬-有機架構之合成 81
3.3.1 MIL-100(Cr)之合成 82
3.3.2 MIL-100(Fe)之合成 83
3.3.3 MIL-96-Al之合成 84
3.3.4 MIL-96-In之合成 87
3.3.5 MIL-96-Ga之合成 88
3.4 特性分析與性質測試 90
3.4.1 X-ray粉末繞射儀(XRD) 90
3.4.2 場發掃描式電子顯微鏡(FE-SEM) 92
3.4.3穿透式電子顯微鏡與樣品配製 94
3.4.4 傅立葉轉換紅外線光譜分析(FTIR) 96
3.4.5化學分析電子光譜儀 99
3.4.6 熱重量分析儀 101
3.4.7 高壓氣體吸附裝置 103
3.4.8比表面積&孔隙度分析儀 105
3.4.9同步輻射吸收光譜 109
第四章 結果與討論 114
4.1 MIL-100(Cr) 114
4.1.1 MIL-100(Cr)晶體之合成 116
4.1.2 MIL-100(Cr)晶體之外觀及特性分析 118
4.1.2.1 不同的合成配方 118
4.1.2.2 MIL-100(Cr)之雜質去除 123
4.2 MIL-100(Fe) 128
4.2.1 MIL-100(Fe)晶體之合成 130
4.2.2 MIL-100(Fe)晶體之外觀及特性分析 131
4.2.2.1 不同的合成配方 131
4.2.2.2 MIL-100(Fe)之雜質去除 134
4.3 MIL-96-Al 141
4.3.1 MIL-96-Al晶體之合成 143
4.3.2 MIL-96-Al晶體之外觀及特性分析 146
4.3.2.1 不同的合成配方 146
4.3.2.2 MIL96-Al之雜質去除 159
4.4 MIL-96-In 169
4.4.1 MIL-96-In晶體之合成 171
4.4.2 MIL-96-In晶體之外觀及特性分析 173
4.4.2.1 不同的合成方式 173
4.4.2.2 MIL96-In之雜質去除 180
4.5 MIL-96-Ga 188
4.5.1 MIL-96-Ga晶體之合成 191
4.5.2 MIL-96-Ga晶體之外觀及特性分析 193
4.5.2.1 不同的合成配方 193
4.5.2.2 MIL96-Ga之雜質去除 201
4.6 Ni(HBTC)(4,4’-bipyridine)•3DMF 207
4.6.1 Ni(HBTC)(4,4’-bipyridine).3DMF晶體之合成 210
4.6.2 Ni(HBTC)(4,4’-bipy).3DMF晶體之外觀及特性分析 212
4.7 同步輻射之X光吸收光譜分析 219
4.7.1 X光吸收邊緣結構光譜分析 219
4.7.1.1 InH3-2之X光吸收邊緣結構光譜分析 220
4.7.1.2 InMe3-2之X光吸收邊緣結構光譜分析 222
4.7.1.3 GaH3-2之X光吸收邊緣結構光譜分析 224
4.7.1.4 GaMe3-2之X光吸收邊緣結構光譜分析 227
4.7.2 X光延伸細微結構光譜 230
4.7.2.1 InH3-2之X光延伸細微結構光譜分析 230
4.7.2.2 InMe3-2之X光延伸細微結構光譜分析 233
4.8 比表面積與孔洞大小分析 236
4.8.1 MIL-100(Cr) 236
4.8.2 MIL-100(Fe) 239
4.8.3 MIL-96-Al 244
4.8.4 Ni(HBTC)(4,4’-bipyridine) 247
第五章 結論及未來研究方向 253
5.1 結論 253
5.2 未來研究方向 255
參考文獻 256
1.衣寶廉,「燃料電池-原理與應用」,五南台北圖書出版有限公司(2005)。
2.Rosi N. L., Eckert J., Eddaoudi M., Vodak D. T., Kim J., O’Keeffe M., and Yaghi O. M., Hydrogen storage in microporous metal-organic frameworks, Science, 300(5622), 1127-1129 (2003).
3.Yaghi O. M. and Li, H., Hydrothermal synthesis of a metal-Organic framework containing large rectangular channels, J. Am. Chem. Soc., 117(41), 10401-10402 (1995).
4.Mueller U., Schubert M., Teich F., Puetter H., Schierle-Arndt K., and Pastré J., Metal-organic frameworks-Prospective industrial applications, J Med. Chem., 16(7), 626-636 (2006).
5.Panella B., Hirscher M., Putter H., and Muller U., Hydrogen adsorption in metal–organic frameworks: Cu-MOFs and Zn-MOFs compared, Adv. Funct. Mater., 16(4), 520-524 (2006).
6.Rowsell J. L. C., Millward A. R., Park K. S., and Yaghi O. M., Hydrogen sorption in functionalized metal-organic frameworks, J. Am. Chem. Soc.,126(18), 5666-5667 (2004).
7.Serre C., Millange F., Thouvenot C., Noguès M., Marsolier G., Louër D., and Férey G., Very large breathing effect in the first nanoporous chromium(III)-based solids: MIL-53 or CrIII(OH)•{O2C-C6H4- CO2}•{HO2C-C6H4-CO2H}x•H2O, J. Am. Chem. Soc., 124(45), 13519-13526 (2002).
8.Millange F., Serre C., and Férey G. Synthesis, structure determination and properties of MIL-53-as and MIL-53-ht: The first CrIII hybrid inorganic-organic microporous solids: CrIII(OH)•{O2C-C6H4-CO 2}•{HO2C-C6H4-CO 2H}x, Chem .Commun., 14(3), 998-1003 (2002).
9.Férey G., Latroche M., Serre C., Millange F., Loiseau T., and Percheron-Guégan A., Hydrogen adsorption in the nanoporous metal-benzenedicarboxylate M(OH)(O2C-C6H4-CO2) (M = Al3+, Cr3+), MIL-53, Chem. Commun., 9(24), 2976-2977 (2003).
10.Loiseau T., Serre C., Huguenard C., Fink G., Taulelle F., Henry M., Bataille T., and Férey G., A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration, Chem. Eur. J., 10(6), 1373-1382 (2004).
11.Rowsell J. L. C. and Yaghi O. M., Metal-organic frameworks: A new class of porous materials, Micropor. Mesopor. Mat., 73(1-2), 3-14 (2004).
12.Li Y. and Yang R. T., Significantly enhanced hydrogen storage in metal-organic frameworks via spillover, J. Am. Chem. Soc., 128(3), 726-727 (2006).
13.Ross D. K., Hydrogen storage: The major technological barrier to the development of hydrogen fuel cell cars, Vacuum, 80(10), 1084-1089 (2006).
14.曲新生、陳發林、呂錫民,「產氫與儲氫技術」,五南圖書出版股份有限公司 (2007)。
15.Eddaoudi M., Li H., and Yaghi O. M., Highly porous and stable metal-organic frameworks: Structure design and sorption properties, J. Am. Chem. Soc., 122(7), 1391-1397 (2000).
16.Collins D. J. and Zhou H. -C., Hydrogen storage in metal-organic frameworks, J. Mater. Chem., 17(30), 3154-3160 (2007).
17.Chen B., Eddaoudi M., Hyde S. T., O''Keeffe M., and Yaghi O. M., Interwoven metal-organic framework on a periodic minimal surface with extra-large pores, Science, 291(5506), 1021-1023 (2001).
18.Eddaoudi M., Kim J., Rosi N., Vodak D., Wachter J., O''Keeffe M., and Yaghi O. M., Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage, Science., 295(5554), 469-472 (2002).
19.Kesanli B., Cui Y., Smith M. R., Bittner E. W., Bockrath B. C., and Lin W., Highly interpenetrated metal-organic frameworks for hydrogen storage Angew. Chem. Int. Edit., 44(1), 72-75 (2004).
20.Zhao X., Xiao B., Fletcher A. J., Thomas K. M., Bradshaw D., and Rosseinsky M. J., Hysteretic adsorption and desorption of hydrogen by nanoporous metal-organic frameworks, Science, 306(5698), 1012-1015 (2004).
21.Duren T., Sarkisov L., Yaghi O. M., and Snurr R. Q., Design of new materials for methane storage, Langmuir, 20(7), 2683-2689 (2004).
22.Skoulidas A. I., Molecular dynamics simulations of gas diffusion in metal-organic frameworks: argon in CuBTC, J. Am. Chem. Soc., 126(5), 1356-1357 (2004).
23.Bourrelly S., Llewellyn P. L., Serre C., Millange F., Loiseau T., and Férey G., Different adsorption behaviors of methane and carbon dioxide in the isotypic nanoporous metal terephthalates MIL-53 and MIL-47, J. Am. Chem. Soc., 127(39), 13519-1352 (2005).
24.Darkrim F. L., Malbrunot P., and Tartaglia G. P., Review of hydrogen storage by adsorption in carbon nanotubes, Int. J. Hydrogen Energ., 27(2-3), 193-202 (2002).
25.付正方、趙有中、王曙中、王慶瑞,碳基吸附儲氫材料,高科技纖維與應用,29(3),42-45 (2004)。
26.Roddy D., Making a viable fuel cell industry happen in the Tees Valley, Fuel Cells Bulletin, 2004(1), 10-12 (2004).
27.Satterfield C. N., 「Heterogeneous catalysis in practice」, McGRAW-Hill Book company (1980).
28.谷傑人,「氫能開發與燃料電池應用」,氫能開發技術研討會(2006/11/07)。
29.李中秋、張文麗,儲氫材料的研究發展現狀,化工新型材料,33(10),38-41 (2005)。
30.Reilly J. J. and Wiswall R. H., Formation and properties of iron titanium hydride, Inorg. Chem., 13(1), 218-222 (1974).
31.Reilly J. J. and Wiswall R. H., Reaction of hydrogen with alloys of magnesium and nickel and the formation of Mg2NiH4, Inorg. Chem., 11(7), 2254-2256 (1968).
32.Bernauer O., Töpler J., Noréus D., Hempelmann R., and Richter D., Fundamentals and properties of some Ti/Mn based Laves phase hydrides, Int. J. Hydrogen Energ., 14(3), 187-200 (1989).
33.Park J. M. and Lee J. Y., Thermodynamic properties of the Zr0.8Ti0.2(MnxCr1−x)Fe-H2 system, J. Less-Common Met., 167(2), 245-253 (1991).
34.大角泰章著,「水素吸藏合金」,株式會社301(11993)。
35.Zhu W. Z., Miser D. E., Chan W. G., and Hajaligol M. R., Characterization of mutliwalled carbon nanotubes prepared by carbon arc cathode deposit, Mater. Chem. Phys., 82(3), 638-647 (2004).
36.Koh J. T., Goudy A. J., Huang P., and Zhou G., A comparison of the hydriding and dehydriding kinetics of LaNi5 hydride, J. Less-Common Met., 153(1), 89-100 (1989).
37.Huang P., Goudy A. J., and Koh J. T., Hydrogen absorption-desorption kinetics of MnNi5 and related compounds, J. Less-Common Met., 155(1), 111-118 (1989).
38.Selvam P., Viswanathan B., and Srinivasan V., Some comments on modes of activation of LaNi5 and CaNi5 alloys for hydrogen storage, Int. J. Hydrogen Energ., 14(8), 573-577 (1989).
39.Srivastava S. and Srivastava O. N., Hydrogenation behaviour with regard to storage capacity, kinetics, stability and thermodynamic behaviour of hydrogen storage composite alloys, LaNi5/La2Ni7, LaNi3, J. Alloy Compd., 290(1-2), 250-256 (1997).
40.Von Waldkirch Th., Seiler A., Zuercher P., and Mathieu H. J., Mg-Based hydrogen storage materials: surface segregation in Mg/2Cu and related catalytic effects., Mater. Res. Bull. 15(3), 353-362 (1980).
41.袁華堂、馮豔、宋赫男、王一菁,鎂基儲氫合金改性的研究發展,化工進展,22(5),454-458 (2003)。
42.賈志華、王玉平,儲氫合金吸氫量測試方法,金屬功能材料,11(5),28-31 (2004)。
43.Züttel A., Hydrogen storage methods, Naturwissenschaften, 91(4), 157-172 (2004).
44.Arroyo y de Dompablo M. E. and Ceder G., First principles investigations of complex hydrides AMH4 and A3MH6 (A = Li, Na, K, M = B, Al, Ga) as hydrogen storage systems, J. Alloy. Compd., 364(1-2), 6-12 (2004).
45.Simon R. J., Paul A. A., Peter P. E., Ian G., James W. P., Malek Al-Mamouri, David Book, I. Rex Harris, John D. S., and Allan W., Chemical activation of MgH2; a new route to superior hydrogen storage materials, Chem. Commun., 281(1), 2823-2825 (2005).
46.Luo W., (LiNH2–MgH2): a viable hydrogen storage system, J. Alloy. Compd., 381(1-2), 284-287 (2004).
47.Majzoub E. H., McCarty K. F., and Ozoli V., Lattice dynamics of NaAlH4 from high-temperature single-crystal Raman scattering and ab initio calculations: Evidence of highly stable AlH4 anions, Phys. Rev. B, 71(2), 24118-24123 (2005).
48.木士春,礦物儲氫研究,大地構造與成礦學,29(1),122-130 (2005)。
49.賀福、趙建國、王潤娥,中孔活性碳纖維及其吸附特性,高科技纖維與應用,24(3),1-5 (1999)。
50.Rouquerol F., Rouquerol J., and Sing K., Adsorption by powders and porous solids, Principles, Methodology and applications, Academic press 124(2), 234-139 (1999).
51.Iijima S., Hslical microtubules of graphitic carbon, Nature, 354(6348), 56-58 (1991).
52.Lau K. T. and Hui D., The revolutionary creation of new advanced materials-carbon nanotube composites, Compos. Part B-Eng., 33(4), 263-277 (2002).
53.周應平、馮奎、孫豔、周理,評論奈米碳管儲氫研究,化學進展,15(5),345-350 (2003)。
54.馬振基,「奈米材料科技原理與應用」,全華台北出版社 (2003)。
55.Chambers A., Park C., Baker R. T. K., Rodriguez N. M., Hydrogen storage in graphite nanofibers, J Phys. Chem. B., 102(22), 4249-4256 (1998).
56.夏三宇,陳曉紅,宋懷河,「新型RF炭氣凝膠微球的製備及結構表徵」,炭素技術,24(6),5-8 (2005)。
57.Gavalda S., Gubbins K. E., Hanzawa Y., Kaneko K., and Thomson K. T., Nitrogen adsorption in carbon aerogels: A molecular simulation study, Langmuir 18(6), 2141-2151 (2002).
58.Langmi H. W., Walton A., Al-Mamouri M. M., Johnson S. R., Book D., Speight J. D., Edwards P. P., Gameson I, Anderson P. A., and Harris I. R., Hydrogen adsorption in zeolites A, X, Y and RHO, J Alloy Compd., 356-357(10), 710-715 (2003).
59.林慧雯,「金屬−有機架構的自組裝:混配基金屬配位聚合物的結構、磁性及熱穩定性研究」,碩士論文,私立東海大學化學系(2005)。
60.Ockwig N. W., Delgado-Friedrichs O., O''Keeffe M., and Yaghi O. M., Reticular chemistry: Occurrence and taxonomy of nets and grammar for the design of frameworks, Acc. Chem. Res., 38(3), 176-182 (2005).
61.Rowsell J. L. C., Spencer E. C., Eckert J., Howard J. A. K., and Yaghi O. M., Gas adsorption sites in a large-pore metal-organic framework, Science, 309(5697), 1350-1354 (2005).
62.Ward M. D., Materials science: Molecular fuel tanks, Science, 300(5622), 1004-1005 (2003).
63.Papaefstathiou G. S. and MacGillivray L. R. Inverted metal-organic frameworks: Solid-state hosts with modular functionality, Coordin. Chem. Rev., 246(1-2), 169-184 (2003).
64.http://www.hydrogen.energy.gov.
65.Yaghi O. M., O''Keeffe M., Ockwig N. W., Chae H. K., Eddaoudi M., and Kim J., Reticular synthesis and the design of new materials, Nature, 423(6941), 705-714 (2003).
66.Eddaoudi M., Moler D. B., Li H., Chen B., Reineke T. M., O''Keeffe M., and Yaghi O. M., Modular chemistry: Secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks, Acc. Chem. Res., 34(4), 319-330 (2001).
67.Zaworotko M. J., Superstructural diversity in two dimensions: Crystal engineering of laminated solids, Chem. Comm., 1(1), 1-9 (2001).
68.Moulton B. and Zaworotko M. J., From molecules to crystal engineering: Supramolecular isomerism and polymorphism in network solids, Chem. Rev., 101(6), 1629-1658 (2001).
69.Rowsell J. L. C. and Yaghi O. M., Strategies for hydrogen storage in metal-organic frameworks, Angew. Chem. Int. Edit., 44(30), 4670-4679 (2005).
70.Dailly A., Vajo J. J., and Ahn C. C., Saturation of hydrogen sorption in Zn benzenedicarboxylate and Zn naphthalenedicarboxylate, J Phys. Chem. B., 110(3), 1099-1101 (2006).
71.Wong-Foy A. G., Matzger A. J., and Yaghi O. M., Exceptional H2 saturation uptake in microporous metal-organic frameworks, J. Am. Chem. Soc., 128(11), 3494-3495 (2006).
72.Rowsell J. L. C., Eckert J., and Yaghi, O.M., Characterization of H2 binding sites in prototypical metal-organic frameworks by inelastic neutron scattering, J. Am. Chem. Soc., 127(42), 14904-14910 (2005).
73.Rowsell J. L. C. and Yaghi O. M., Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal-organic frameworks, J. Am. Chem. Soc., 128(4), 1304-1315 (2006).
74.Millward A. R., and Yaghi O. M., Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature, J. Am. Chem. Soc., 127(51), 17998-17999 (2005).
75.Huang L., Wang H., Chen J., Wang Z., Sun J., Zhao D., and Yan Y., Synthesis, morphology control, and properties of porous metal-organic coordination polymers, Micropor. Mesopor. Mat., 58(2), 105-114 (2003).
76.Cussen E. J., Claridge J. B., Rosseinsky M. J., and Kepert C. J., Flexible sorption and transformation behavior in a microporous metal-organic framework, J. Am. Chem. Soc., 124(32), 9574-9581 (2002).
77.Ni Z, and Masel R. I., Rapid production of metal-organic frameworks via microwave-assisted solvothermal synthesis, J. Am. Chem. Soc., 128(38), 12394-12395 (2005).
78.Jae Y. C., Kim J., Sung H. J., Kim H.-K., Chang J.-S., and Chae, H. K., Microwave synthesis of a porous metal-organic framework, zinc terephthalate MOF-5, Bull. Korean Chem. Soc., 27(10), 1523-1524 (2006).
79.Dathe H., Peringer E., Roberts V., Jentys A., and Lercher J. A., Metal organic frameworks based on Cu2+ and benzene-1,3,5-tricarboxylate as host for SO2 trapping, C. R. Chimie, 8(3-4), 753–763 (2005).
80.Schlichte K., Kratzke T., and Kaskel S., Improved synthesis, thermal stability and catalytic properties of the metal-organic framework compound Cu3(BTC)2, Micropor. Mesopor. Mat., 73(1-2), 81-88 (2004).
81.Matsuda R., Kitaura R., Kitagawa S., Kubota Y., Belosludov R. V., Kobayashi T. C., Sakamoto H., Chiba T., Takata M., and Mita Y., Highly controlled acetylene accommodation in a metal-organic microporous material, Nature, 436(7048), 238-241 (2005).
82.Snurr R. Q., Hupp J. T., and Nguyen S. T., Prospects for nanoporous metal-organic materials in advanced separations processes, AIChE J., 50(6), 1090-1095 (2004).
83.Car A., Stropnik C., and Peinemann K.-V., Hybrid membrane materials with different metal-organic frameworks (MOFs) for gas separation, Desalination, 200(1-3), 424-426 (2006).
84.Li H., Eddaoudi M., O''Keeffe M., and Yaghi O. M., Design and synthesis of an exceptionally stable and highly porous metal- organic framework, Nature, 402(6759), 276-279 (1999).
85.Wang Q. M., Shen, D., Bulow M., Lau M. L., Deng S., Fitch F. R., Lemcoff N. O., and Semanscin J., Metallo-organic molecular sieve for gas separation and purification, Micropor. Mesopor. Mat., 55(2), 217-230 (2002).
86.Vishnyakov A., Ravikovitch P. I., Neimark A. V., Bulow M., and Wang Q. M., Nanopore structure and sorption properties of Cu-BTC metal-organic framework, Nano Lett., 3(6), 713-718 (2003).
87.Perles J., Iglesias M., Martín-Luengo M.-Á., Monge M. A., Ruiz-Valero C., and Snejko, N, Metal-organic scandium framework: Useful material for hydrogen storage and catalysis, Chem. Mater., 17(23), 5837-5842 (2005).
88.De Rosa S., Giordano G., Granato T., Katovic A., Siciliano A., and Tripicchio F., Chemical pretreatment of olive oil mill wastewater using a metal-organic framework catalyst, J Agr. Food. Chem., 53(21), 8306-8309 (2005).
89.Shu M., Tu C., Xu W., Jin H., and Sun J., Reversible anion exchanges of porous metal-organic frameworks: Syntheses and structures of silver complexes with novel rigid tripodal nitrogen ligands, Cryst. Growth Des., 6(8), 1890-1896 (2006).
90.Wan S.-Y., Huang Y.-T., Li Y.-Z., and Sun W.-Y., Synthesis, structure and anion-exchange property of the first example of self-penetrated three-dimensional metal-organic framework with flexible three-connecting ligand and nickel(II) perchlorate, Micropor. Mesopor. Mat., 73(1-2), 101-108 (2004).
91.Rieter W. J., Taylor K. M. L., An H., Lin W., and Lin W., Nanoscale metal-organic frameworks as potential multimodal contrast enhancing agents, J. Am. Chem. Soc., 128(28), 9024-9025 (2006).
92.Cohen S. M., New approaches for medicinal applications of bioinorganic chemistry, Curr. Opin. Chem. Biol, 11(2), 115-120 (2007).
93.Horcajada P., Serre C., Maurin G., Ramsahye N. A., Balas F., Vallet-Regí M., Sebban M., and Férey, G., Flexible porous metal organic frameworks for a controlled drug delivery, J. Am. Chem. Soc., 130(21), 6774-6780 (2008).
94.Horcajada P., Serre C., Vallet-Regí M., Sebban M., Taulelle F., and Férey G., Metal-organic frameworks as efficient materials for drug delivery, Angew. Chem. Int. Edit., 45(36), 5974-5978 (2006).
95.Zhou1 W. and Yildirim1 T., Lattice dynamics of metal-organic frameworks (MOFs): neutron inelastic scattering and first-principles calculations, Chem. Phys. Lett., 389(3), 514-520 (2005).
96.Yang Q. and Zhong C., Molecular simulation of adsorption and diffusion of hydrogen in metal-organic frameworks, J Phys. Chem. B., 109(24), 11862-11864 (2005).
97.Yang Q. and Zhong C., Understanding hydrogen adsorption in metal-organic frameworks with open metal sites: A computational study, J Phys. Chem. B., 110(2), 655-658 (2006).
98.Frost H., Duren T., and Snurr R. Q., Effects of surface area, free volume, and heat of adsorption on hydrogen uptake in metal-organic frameworks, J Phys. Chem. B., 110(19), 9565-9570 (2006).
99.Frost H., Düren T., and Snurr R. Q., Effects of surface area, free volume, and heat of adsorption on hydrogen uptake in metal-organic frameworks, J. Phys. Chem. B, 110(19), 9565-9570 (2006).
100.Liu Y., Kabbour H., Brown C. M., Neumann D. A., and Ahn C. C., Increasing the density of adsorbed hydrogen with coordinatively unsaturated metal centers in metal-organic frameworks, Langmuir, 24(9), 4772-4777 (2008).
101.http://hudsonlab.syr.edu/inss.html.
102.Centrone A., Siberio-Pérez D. Y., Millward A. R., Yaghi O. M., Matzger A. J., and Zerbi G., Raman spectra of hydrogen and deuterium adsorbed on a metal-organic framework, Chem. Phys. Lett., 411(4-6), 516-519 (2005).
103.Wang X. -S., Ma S., Forster P. M., Yuan D., Eckert J., Lòpez J. J., Murphy B. J., and Zhou H. -C., Enhancing H2 uptake by “close-packing” alignment of open copper sites in metal-organic frameworks, Angew. Chem. Int. Edit., 47(38), 7263-7266 (2008).
104.Lochan R. C., Khaliullin R. Z., and Head-Gordon M., Interaction of molecular hydrogen with open transition metal centers for enhanced binding in metal-organic frameworks: A computational study, Inorg. Chem., 47(10), 4032-4044 (2008).
105.Kim D., Jung D. H., Choi S. B., Yoon J. H., Kim J., Choi K., and Choi, S. -H., A density functional theory study on the interaction of hydrogen molecules with aromatic linkers in metal-organic frameworks, J. Phys. Chem Solids, 69(5-6), 1428-1431 (2008).
106.Nouar F., Eubank J. F., Bousquet T., Wojtas L., Zaworotko M. J., and Eddaoudi M., Supermolecular building blocks (SBBs) for the design and synthesis of highly porous metal-organic frameworks, J. Am. Chem. Soc., 130(6), 1833-1835 (2008).
107.Li Y. and Yang R. T., Hydrogen storage in metal-organic frameworks by bridged hydrogen spillover, J. Am. Chem. Soc., 128(25), 8136-8137 (2006).
108.Sang S. H. and Goddard III W. A., Lithium-doped metal-organic frameworks for reversible H2 Storage at ambient temperature, J. Am. Chem. Soc., 129(27), 8422-8423 (2007).
109.Dalach P., Frost H., Snurr R. Q., and Ellis D. E., Enhanced hydrogen uptake and the electronic structure of lithium-doped metal-organic frameworks, J. Phys. Chem. C, 112(25), 9278-9284 (2008).
110.Kolmann S. J., Chan B., and Jordan M. J. T., Modelling the interaction of molecular hydrogen with lithium-doped hydrogen storage materials, Chem. Phys. Lett., 467(1-3), 126-130 (2008).
111.Klontzas E., Mavrandonakis A., Tylianakis E., and Froudakis G. E., Improving hydrogen storage capacity of MOF by functionalization of the organic linker with lithium atoms, Nano Lett., 8(6), 1572-1576 (2008).
112.Langohr D., Berthon-Fabry S., Gonzalez-Aguilar J., Fulcheri L., and Achard P., Development of a volumetric method-experimental test bench for hydrogen storage characterization, Int. J. Hydrogen Energ., 32(12), 1846-1854 (2007).
113.Li X., Zhu H., Xu C., Mao Z., and Wu D., Measuring hydrogen storage capacity of carbon nanotubes by tangent-mass method, Int. J. Hydrogrn Energ., 28(11), 1251-1253 (2003).
114.Pan W., Li S., Zhang X., Wu D., and Mao Z., Measuring hydrogen storage capacity of carbon nanotubes by modified tangent-mass method, Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 26(2), 240-243 (2005).
115.http://hydrogen.pnl.gov.
116.Lide D. R., “CRC handbook of chemistry and physics, 89 (2009).
117.Loiseau T., Mellot-Draznieks C., Muguerra H., Férey G., Haouas M., and Taulelle F., Hydrothermal synthesis and crystal structure of a new three-dimensional aluminum-organic framework MIL-69 with 2,6-naphthalenedicarboxylate (ndc), Al(OH)(ndc)•H2O, C. R. Chimie, 8(3-4), 765-772 (2005).
118.Loiseau T., Lecroq L., Volkringer C., Marrot J., Férey G., Haouas M., Taulelle F., Bourrelly S., Llewellyn P. L., and Latroche M MIL-96, a porous aluminum trimesate 3D structure constructed from a hexagonal network of 18-membered rings and μ3-oxo-centered trinuclear units, J. Am. Chem. Soc., 128(31), 11223-11230 (2006).
119.孫逸民、陳玉舜、趙敏勳、謝明學、劉興鑑,「儀器分析」,全威台北圖書有限公司(2001)。
120.陸性、何子萬,「有機分子光譜分析」,中央台北圖書出版社(1989)。
121.Vimont A., Goupil J.-M., Lavalley J.-C., Daturi M., Surblé S., Serre C., Millange F., Audebrand N., Investigation of acid sites in a zeotypic giant pores chromium(III) carboxylate, J. Am. Chem. Soc., 128 (10), 3218-3227 (2006).
122.Loiseau T. and Férey, G., Crystalline oxyfluorinated open-framework compounds: Silicates, metal phosphates, metal fluorides and metal-organic frameworks (MOF), J. Fluorine Chem., 128 (4), 413-422 (2007).
123.Férey G., Serre C., Mellot-Draznieks C., Millange F., Surblé S., Dutour J., Margiolaki I., A hybrid solid with giant pores prepared by a combination of targeted chemistry, simulation, and powder diffraction, Angew. Chem. Int. Ed., 43 (46), 6296-6301 (2004).
124.Llewellyn P. L., Bourrelly S., Serre C., Vimont A., Daturi M., Hamon L., De Weireld G., Férey G., High uptakes of CO2 and CH4 in mesoporous metal-organic frameworks MIL-100 and MIL-101, Langmuir, 24 (14), 7245-7250 (2008).
125.陳力俊,「材料電子顯微鏡學」,民全書局,1994年11月。
126.台灣同步輻射研究中心,X光粉末繞射及X光吸收光譜訓練課程講義,2009年2月。
127.Küsgens P., Rose M., Senkovska I., Fröde H., Henschel A., Siegle S., Kaskel S., Characterization of metal-organic frameworks by water adsorption, Microporous Mesoporous Mater., 120 (3), 325–330 (2009).
128.Horcajada P., Surblé S., Serre C., Hong D.-Y., Seo Y.-K., Chang J.-S., Grenèche J.-M., (...), Férey, G., Synthesis and catalytic properties of MIL-100(Fe), an iron(III) carboxylate with large pores, Chem. Commun., (27), 2820-2822 (2007).
129.Volkringer C., Loiseau T., A new indium metal-organic 3D framework with 1,3,5-benzenetricarboxylate, MIL-96 (In), containing μ3-oxo-centered trinuclear units and a hexagonal 18-ring network, Mater. Res. Bull.,41 (5), 948-954(2006).
130.Lin Z., Chen L., Yue C., Yuan D., Jiang F., Hong M., 3-D indium(III)-btc channel frameworks and their ion-exchange properties (btc= 1,3,5-benzenetricarboxylate), J. Solid State Chem., 179 (4), 1154-1160 (2006).
131.Lin Z., Jiang F., Chen L., Yuan D., Hong M., New 3-D chiral framework of indium with 1,3,5-benzenetricarboxylate, Inorg. Chem., 44 (1), 73-76(2005).
132.Cheng J.-W., Zhang J., Zheng S.-T., Yang G.-Y., Linking two distinct layered networks of nanosized (Ln18) and (Cu24) wheels through isonicotinate ligands, Chem. Eur. J., 14 (1), 88-97 (2008).
133.Volkringer C., Loiseau T., Férey G., Morais C. M., Taulelle F., Montouillout, V., Massiot, D., Synthesis, crystal structure and 71Ga solid state NMR of a MOF-type gallium trimesate (MIL-96) with μ3-oxo bridged trinuclear units and a hexagonal 18-ring network, Microporous Mesoporous Mater., 105 (1-2), 111-117 (2007).
134.Haouas M., Volkringer C., Loiseau T., Férey G., Taulelle F., The extra-framework sub-lattice of the metal-organic framework MIL-110: A solid-state NMR investigation, Chem. Eur. J., 15 (13), 3139-3146(2009).
135.Gao C., Liu S., Xie L., Ren Y., Cao J., Sun C., Design and construction of a microporous metal-organic framework based on the pillared-layer motif, Cryst. Eng. Comm., 9 (7), 545-547 (2007).
136.Li Y., Xie L., Liu Y., Yang R., Li X., Favorable hydrogen storage properties of M(HBTC)(4,4′-bipy) •3DMF (M = Ni and Co), Inorg.Chem., 47 (22), 10372-10377 (2008).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊