跳到主要內容

臺灣博碩士論文加值系統

(34.226.244.254) 您好!臺灣時間:2021/08/01 04:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳暐宗
研究生(外文):Wei-Chung Chen
論文名稱:利用草酸鹽礦化分解全氟化物技術研發
論文名稱(外文):Development of Mineralization by Oxalate for Degradation ofPerfluorinated Compounds
指導教授:林錕松
學位類別:碩士
校院名稱:元智大學
系所名稱:化學工程與材料科學學系
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:188
中文關鍵詞:溫室氣體暖化潛勢全氟化物氟化氣體SF6NF3草酸鹽礦化氟化金屬鹽光譜分析
外文關鍵詞:mineralizationgreenhouse gasesglobal warming potentialPerfluorinated Compoundsfluoride gasesSF6NF3oxalatesfluor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:147
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
伴隨著高科技產業的蓬勃發展,大氣中高暖化潛勢的溫室氣體濃度亦隨之持續增加與累積。以SF6為例,SF6的暖化破壞力是CO2的23,900倍。半導體工業在化學氣相沉積反應腔清洗(CVD)以及乾蝕刻製程中需要用到全氟化物(PFCs)或其他氟化氣體,而在台灣,上述工業製程每年使用超過300公噸的全氟化物。
本研究主要目的是利用草酸鹽類(Li2C2O4、Na2C2O4及K2C2O4),在較低溫的反應條件下,礦化全氟化物(CXFX)、NF3及SF6。本研究試圖取得最佳的反應條件及反應機制,並且分析產物分佈,評估金屬鹽類(KF、NaF、LiF)回收再利用之可行性。另外,亦利用貴重儀器,例如:XRD、TGA、FE-SEM/ EDS、FT-IR、EXAFS/XANES,瞭解草酸鹽類與全氟化物之界面及反應機制,以利提升去除全氟化物的效果,同時做為工程設計以及設置成本的參考。
從FE-SEM分析得知,草酸鹽類及金屬鹽類的大小約為1-20 μm。透過FT-IR圖譜的在線分析,可以看到草酸鹽類對於NF3以及SF6有高於95%的轉化效率,顯示這兩種氣體在經過草酸鹽的礦化反應後大部份已分解,其中SF6分解還原成黃色元素態硫,草酸鹽分解生成CO2。將經過礦化反應後的殘餘物進行XRD分析後可以看出,草酸鹽類大都已經轉化成金屬鹽類;在EDS分析中可以發現S以及F原子的特徵波峰,藉此可以推論氣體型態的SF6已經經由礦化反應轉化成固體型態,而EXAFS/XANES參數可說明S之氧化價數主要為0價元素硫,可見SF6在礦化分解過程,SF6確實已分解並還原成元素態硫,且S原子之配位數為1,鍵距為1.98 Å。
本研究為確定草酸鹽在反應溫度500℃中,係因氟化氣體的加入產生礦化反應,並非為草酸鹽在此溫度中自行分解,因此將草酸鹽、礦化殘餘物、氟化金屬鹽進行熱重分析(TGA)實驗。結果發現草酸鹽與礦化殘餘物的TGA曲線顯著不同,顯示草酸鹽在500℃的溫度下,若沒有氟化氣體,並不產生分解。相對地,礦化殘餘物與氟化金屬鹽的TGA曲線相當接近。草酸鹽因為礦化氟化氣體,其TGA曲線遂往氟化金屬鹽的TGA曲線偏移。本實驗說明氟化氣體被草酸鹽礦化,絕大部分轉化成氟化金屬鹽。
此外,經精細質量平衡計算可知,草酸鹽類(Li2C2O4, Na2C2O4, K2C2O4)對於SF6的參與礦化反應後,其S產出率分別為92.09、91.85及84.98%,金屬鹽類的轉化率則為98.18、95.8及95.2%;而草酸鹽類對於NF3的參與礦化反應後,金屬鹽類的轉化率則為92.18、90.67及90.02%。並藉此可知,每公克的草酸鹽類(Li2C2O4, Na2C2O4, K2C2O4)對於SF6(1,000 ppm)的去除效率分別為4.975、12及7.2 (L/g),而每小時的去除效率為1.5(L/h);而對於NF3(1,000 ppm)的去除效率分別為14.1、12.6及11.7(L/g),每小時的去除效率亦為1.5(L/h)。
Along with the enormous development of the hi-tech industries, close to draw an attention of the global warming potential (GWP) for the significant increase of accumulated greenhouse gases in the atmosphere. For example, PFCs (Perfluorinated Compounds):SF6 is about 23,900 times more destructive than CO2. PFCs and other fluoride gases are vividly used as Chemical Vapor Deposition (CVD) and dry etching processes in semiconductor industries. Recently, such industrial processes form Taiwan has been discharged more than 300 metric tons of fluoride gases in every year.
The main purpose of this research is to utilize oxalates (Li2C2O4, Na2C2O4 and K2C2O4) to mineralize PFCs, NF3 and SF6 at temperatures lower than regular condition. Finding the optimal requirements and mechanisms of reactions, this research also analyzed the product distributions and assessed the feasibility of retrieving metal salts (LiF, NaF and KF) for recycling. By using XRD, TGA, FE-SEM/EDS, FT-IR and EXAFS/XANES, this research probed the interfaces of reactions between fluorides and oxalates. The results can be used to improve the efficiency of removing fluorides, provide blueprints for engineering designs and evaluate the costs of conducting such designs.
The particle sizes of oxalates and metal salt are 1-20 μm. Through on-line analysis of FT-IR spectra, this research found out oxalates have more than 95 % transformation efficiency on NF3 and SF6. Thus, these two fluoride gases are significantly degraded after mineralization by oxalates. Usually, SF6 is reduced to sulfur and oxalates are decomposed to produce CO2 respectively. This research confirms that most of SF6 is transformed to metal salt (M+F-) by analyzing the mineralized residuals through XRD. From the spectra of EDS, the characteristic peaks of sulfur and fluorine indicate SF6 has been degraded and transformed from gas phase to solid form. The parameter of EXAFS/XANES point out the oxidation number of sulfur is zero(0) valence, verifying the sulfur of SF6 has been reduced to element sulfur after mineralization. Beside that the coordination number of sulfur is belongs to one(1) with bond distance 1.98 Å.
Additionally, TGA analysis have been conducted to understand the influence of fluoride gas and the temperature onto the decompose behavior of oxalates, mineralization residuals and fluoride metal salts individually. The results illustrate the TGA patterns of oxalates are significantly different from those of mineralized residuals. This may be concluded that oxalates will decompose the fluoride gases at the temperature 500 ℃. On the contrary, TGA curves of mineralized residuals are much similar with those of fluoride metal salts and thus indicate oxalates curves are shifted toward fluoride metal salts after mineralization of the fluoride gases. This study confirms fluoride gases have been efficiently mineralized to metal salts by oxalates.
Furthermore, through mass balance calculate that can know, after the mineralization for SF6 by using oxalate (Li2C2O4, Na2C2O4, K2C2O4), the sulfur production rate are 92.09, 91.85, and 84.95%, the metal salt transformation efficiency are 98.18, 95.8, and 95.2%, that the mineralization for NF3 by using oxalate, the metal salt transformation efficiency are 92.18, 90.67, and 90.02%. That proves the destruction and removal efficiency (DRE) are 4.975, 12, and 7.2 (L/g) for mineralization SF6 (conc. 1,000 ppm) by using each gram of oxalate (Li2C2O4, Na2C2O4, K2C2O4), and the DRE of each hour is 1.5 (L/h). The DRE are 14.1, 12.6, and 11.7 (L/g) for mineralization NF3 (conc. 1,000 ppm) by using each gram of oxalate, the DRE of each hour is 1.5 (L/h).
摘 要 I
ABSTRACT III
誌 謝 V
目 錄 VI
圖 目 錄 XI
表 目 錄 XXIII
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的及內容 2
第二章 文獻回顧 4
2.1 PFCs之歷史大氣背景 7
2.2 PFCs之控制或去除方法及技術 11
2.3 全氟化物使用現況及對人類或生態危害 12
2.4 全氟化物之特性 16
2.4.1 四氟化碳(Perfluoromethane,CF4) 25
2.4.2 八氟丙烷(Perfluoropropane,C3F8) 27
2.4.3 八氟環丁烷(Perfluorocyclobutane,C4F8) 29
2.4.4 三氟化氮(Nitrogen Trifluoride,NF3) 31
2.4.5 六氟化硫(Sulfur Hexafluoride,SF6) 33
2.5 金屬鹽類及硫之特性 36
2.5.1氟化鋰 (Lithium Fluoride,LiF) 36
2.5.2氟化鈉 (Sodium Fluoride,NaF) 37
2.5.3氟化鉀 (Potassium Fluoride,KF) 39
2.5.4硫 (Sulfur,S8) 40
2.6 替代化學物(Alternative Chemistries) 42
2.7 製程最佳化(Process Optimization) 45
2.8 回收再利用(Recovery and Recycle) 45
2.9 破壞減量(Abatement) 47
2.10 介電質放電法(Dielrctric Barrier Discharge,DBD) 56
2.11 草酸鹽礦化法(Oxalate Mineralization) 58
第三章 實驗設備及方法 60
3.1 實驗藥品 60
3.2 實驗儀器 61
3.3 草酸鹽類礦化PFCs反應流程 62
3.4 場發射掃描式電子顯微鏡 64
3.5 X-ray繞射儀 66
3.6 傅立葉轉換紅外線光譜 69
3.7 同步輻射吸收光譜 73
3.8 熱分析-質譜儀 78
第四章 結果與討論 81
4.1草酸鹽類礦化分解PFCs之反應條件 81
4.2 原料之性質分析 82
4.2.1 全氟化物(PFCs)之FTIR光譜分析 82
4.2.2 草酸鹽類及金屬鹽類之結晶構造分析 83
4.2.3 草酸鹽類及金屬鹽類之熱重損失分析 87
4.3 草酸鹽類礦化分解SF6前後之特性分析 94
4.3.1 草酸鹽類礦化分解SF6之反應方程式 94
4.3.2 反應過程之FT-IR光譜氣態分析 94
4.3.3礦化反應後之FE-SEM/EDS分析 101
4.3.4礦化反應後產物之同步輻射X光吸收光譜分析 110
4.3.5結晶構造分析 113
4.3.6 TGA分析 116
4.3.7 礦化反應後的硫生成量及金屬鹽類轉化率 120
4.3.7.1 草酸鋰的硫生成量及LiF轉化率 120
4.3.7.2 草酸鈉的硫生成量及NaF轉化率 122
4.3.7.3 草酸鉀的硫生成量及KF轉化率 124
4.3.8 草酸鹽類對SF6之礦化去除效率 126
4.4 草酸鹽類礦化分解NF3前後之特性分析 127
4.4.1 草酸鹽類礦化分解NF3之反應方程式 127
4.4.2 反應過程之FT-IR光譜氣態分析 127
4.4.3礦化反應後之FE-SEM/EDS分析 134
4.4.4結晶構造分析 140
4.4.5 TGA分析 143
4.4.6 礦化反應後的金屬鹽類轉化率 147
4.4.6.1 草酸鋰的LiF轉化率 147
4.4.6.2 草酸鈉的NaF轉化率 148
4.4.6.3 草酸鉀的KF轉化率 149
4.4.7 草酸鹽類對NF3之礦化去除效率 150
4.5 草酸鹽類礦化分解CF4前後之特性分析 151
4.5.1 反應過程之FT-IR光譜氣態分析 151
4.6草酸鹽類礦化分解C3F8前後之特性分析 156
4.6.1 反應過程之FT-IR光譜氣態分析 156
4.7 草酸鹽類礦化分解C3F8前後之特性分析 161
4.7.1 反應過程之FT-IR光譜氣態分析 161
第五章 結論及未來研究方向 166
5.1 結論 166
5.2 未來研究方向 168
參考文獻 169
附錄A 全氟化物氣體濃度檢量線 184
1.游生任,以介電質放電技術轉化四氟甲烷及六氟乙烷之初步研究,碩士論文,國立中央大學環境工程研究所,中壢,2000。
2.盧哲明,半導體廠高密度電漿化學蒸氣沉積製程尾氣監測及處理設備效率評估分析,碩士論文,高雄第一科技大學環境與安全衛生工程系,高雄,2001。
3.呂榮峰,BaTiO3填充床電漿反應器破壞CF4之初步研究,碩士論文,國立中央大學環境工程研究所,中壢,2001。
4.方永生,表面波微波電漿技術應用於全氟化物削減之研究與反應機制分析,碩士論文,中原大學化學工程研究所,中壢,2002。
5.吳關佑,線管式與填充床式電漿反應器破壞SF6之初步研究,碩士論文,國立中央大學環境工程研究所,中壢,2002。
6.李曼君,以電漿結合觸媒破壞去除NF3之初步研究,碩士論文,國立中央大學環境工程研究所,中壢,2004。
7.Newsted J. L., Nakanishi J., Cousins I., Werner K., and Giesy J. P., Predicted Distribution and Ecological Risk Assessment of a “Segregated” Hydrofluoroether in the Japanese Environment, Environ. Sci. Technol., 36(22), 4761-4769 (2002).
8.Khalil M. A. K., Rasmussen R. A., Culbertson J. A., Prins J. M., Grimsrud E. P., and Shearer M. J., Atmospheric Perfluorocarbons, Environ. Sci. Technol., 37(19), 4358-4361 (2003).
9.So M. K., Taniyasu S., Yamashita N., Giesy J. P., Zheng J., Fang Z., Im S. H., and Lam P. S., Perfluorinated Compounds in Coastal Waters of Hong Kong, South China, and Korea, Environ. Sci. Technol., 38(15), 4056-4063 (2004).
10.Hansen K. J., Clemen L. A., Ellefson M. E., and Johnson H. O., Compound-specific, Quantitative Characterization of Organic Fluorochemicals in Biological Matrixes, Environ. Sci. Technol., 35(4), 766-770 (2001).
11.Key B. D., Howell R. D., and Criddle C. S., Fluorinated Organics in the Biosphere, Environ. Sci. Technol., 31(9), 2445-2454 (1997).
12.Giesy J. P. and Kannan K., Perfluorochemical Surfactants in the Environment, Environ. Sci. Technol., 36(7), 146A-152A (2002).
13.Moody C. A. and Field J. A., Perfluorinated Surfactants and the Environmental Implications of Their Use in Fire-Fighting Foams, Environ. Sci. Technol., 34(18), 3864-3870 (2000).
14.Thayer, K, and Houlihan, J. Perfluorinated Chemicals: Justification for Inclusion of This Chemical Class in the National Report on Human Exposure to Environmental Chemicals; Environmental Working Group, Washington D.C., (December 6, 2002).
15.Kuklenyik Z., Reich J. A., Tully J. S., Needham L. L., and Calafat A. M., Automated Solid-Phase Extraction and Measurement of Perfluorinated Organic Acids and Amides in Human Serum and Milk, Environ. Sci. Technol., 38(13), 3698-3704 (2004).
16.Kubwabo C., Vais N., and Benoit F. M., A Pilot Study on the Determination of Perfluorooctanesulfonate and Other Perfluorinated Compounds in Blood of Canadians, J. Environ. Monitor., 6(6), 540-545 (2004).
17.Higgins C. P., Field J. A., Criddle C. S., and Luthy R. G., Quantitative Determination of Perfluorochemicals in Sediments and Domestic Sludge, Environ. Sci. Technol., 39(11), 3946-3956 (2005).
18.Boulanger B., Vargo J., Schnoor J. L., and Hornbuckle K. C., Detection of Perfluorooctane Surfactants in Great Lakes Water, Environ. Sci. Technol., 38(15), 4064-4070 (2004).
19.Van De Vijver K., Hoff P. T., Das K., Van Dongen W., Esmans E. L., Jauniaux T., Bouquegneau J.-M., Blust R., and De Coen W., Perfluorinated Chemicals Infiltrate Ocean Waters: Link between Exposure Levels and Stable Isotope Ratios in Marine Mammals, Environ. Sci. Technol., 37(24), 5545-5550 (2003).
20.Houghton J. T., In Climate Change 1995, The Science of Climate Change; Houghton, J. T., Eds.; Cambridge University Press: Cambridge, U.K., 12-49 (1996).
21.IAI (Formerly IPAI), Anode Effect and Perfluorocarbon Compounds Emission Survey 1990-1993, International Aluminum Institute Report: London, 9-99 (1996).
22.IAI, Anode Effect Survey 1994-1997 and Perfluorocarbon Compounds Emissions Survey 1990-1997, International Aluminum Institute: London, 2-28 (2000).
23.Marinelli L.and Worth W., Global Warming: A White Paper on the Science, Policies and Control Technologies that Impact the U.S. Semiconductor Industry, Technology Transfer # 93112074A-TR SEMATECH (1994).
24.Kissa, E., Fluorinated Surfactants and Repellents, Second Edition, Marcel Dekker: New York (2001).
25.Weber J., 3M’s Big Cleanup: Why it decided to pull the plug on its best selling stain repellant, Business Week, 3684, 96-98 (2000).
26.3M, Fluorochemical Use, Distribution and Release Overview; U.S. Environmental Protection Agency Docket AR 226-0550 (1999).
27.Smart B. E., In Chemistry of Organic Fluorine Compounds II. A Critical Review, Hudlicky M. and Pavlath, A. E., Eds., American Chemistry Society: Washington, DC, 889-1010 (1995).
28.Okazoe T., Murotani E., Watanabe K., Itoh M., Shirakawa D., Kawahara K., Kaneko I., and Tatematsu S., An Entirely New Methodology for Synthesizing Perfluorinated Compounds: Synthesis of Perfluoroalkanesulfonyl Fluorides from Non-fluorinated Compounds, J. Fluorine Chem., 125(11 SPEC. ISS), 1695-1701 (2004).
29.Broniatowski M., Macho I. S., Miñones Jr. J., and Dynarowicz-Latka P., Properties of Langmuir Monolayers from Semifluorinated Alkanes, Appl. Surf. Sci., 246(4), 342-347 (2005).
30.Blanco E., González-Pérez A., Ruso J. M., Pedrido R., Prieto G., and Samiento F., A Comparative Study of the Physicochemical Properties of Perfluorinated and Hydrogenated Ampiphiles, J. Colloid Interf. Sci., 288(1), 247-260 (2005).
31.Okazoe T., Watanabe K., Itoh M., Shirakawa D., Kawahara K., and Tatematsu S., Synthesis of perfluorinated Carboxylic Acid Membrane Monomers by Utilizing Liquid-Phase Direct Fluorination, J. Fluorine Chem., 126(4), 521-527 (2005).
32.Lehmler H. J., Synthesis of Environmentally Relevant Fluorinated Surfactants- A review, Chemosphere, 58(11), 1471-1496 (2005).
33.Sommer A. P. and Franke R. P., Nanospheres promote the Storage of Perfluorocarbons in Water: Could Nanoscale Aerosols Reduce Ozone Killer Concentrations in Stratospheric Clouds? Nano Lett., 3(3), 321-324 (2003).
34.Yamamoto T., Yasuhara A., Shiraishi F., Kaya K., and Abe T., Thermal Decomposition of Halon Alternatives, Chemosphere, 35(3), 643-654 (1997).
35.Swaminathan S. and Visco, Jr. D. P., Thermodynamic Modeling of Refrigerants Using the Statistical Associating Fluid Theory with Variable Range. 1. Pure Componeets, Ind. Eng. Chem. Res., 44(13), 4798-4805 (2005).
36.Seeley A., Chandler P., Cottle S., and Mawle P., Effective PFC Gas Abatement in a Production Environment, Semiconductor Fabtech-10th Edition, BOC Edwards Exhaust Management Systems, Nailsea, UK (2000).
37.Khalil, M.A.K., Rasmussen, R.A., Culbertson, J.A., Prins, J.M., Grimsrud, E.P., and Shearer, M.J., Atmospheric Perfluorocarbons. Environ. Sci. Technol., 37 (19),4358 -4361 (2003).
38.http://www.glaciology.gfy.ku.dk/ngrip/index_eng.htm
39.Worton D.R., Sturges, W.T., Gohar, L.K., Shine, K.P.and Martinerie, P., Atmospheric Trends and Radiative Forcings of CF4 and C2F6 Inferred form Firn Air. Environ. Sci. Technol., 41 (7), 2184-2189 (2007).
40.http://agage.eas.gatech.edu/data.htm
41.Cooper, C. D. and Alley, F. C., Air Pollution Control:A Design Approach, Waveland Press, Inc (1986).
42.Flagan, R. C. and Seinfeld, J. H., Fundamentals of Air Pollution Engineering, Prentice Hall, New Jersey (1988).
43.Lue S. J. and Yang S. W., Sorption of Organic Solvents in Poly(Dimethyl Siloxane) Membrane. I. Permeant States Using Differential Scanning Calorimetry, J. Macromol. Sci. Phys., 44B(5), 711-725 (2005).
44.Lue S. J. and Peng S. H., Polyurethane (PU) Membrane Preparation With and Without Hydroxypropyl-β-cyclodextrin and Their Pervaporation Characteristics, J. Membrane Sci., 222(1-2), 203-217 (2003).
45.Lue S. J., Du G. M., and Yang S. W., Sorption of Organic Solvents in Polymer Films- the Dependency of Diffusivity on the Permeant States and Polymer Crystallinity, 7th World Congress of Chemical Engineering, Glasgow, Scotland (2005).
46.Raizer Y. P., Allen J. E. and Kisin V. I., Gas Dsicharge Physics, Springer-Verlag Berlin Heidelberg Present, Texas (1991).
47.Chapman B., Glow Discharge Processes, A Wiley-Interscience Publication, Canada, p.297 (1980).
48.Boenig H., Fundamentals of Plasma Chemistry and Technology, Technomic Publishing Co. Inc., Basel, Switzerland (1988).
49.Bower D. H., Planar Plasma Etching of Polysilicon Using CCl4 and NF3, J. Electrochem. Soc. 129(4), 795-799 (1982).
50.Ishii I. and Brandt W. W., Plasma and Reagent Pulse Induced Transients in the Etching of Si by NF3, J. Electrochem. Soc., 133(6), 1240-1242 (1986).
51.Hargis Jr. P. J., and Greengerg, K. E., Dissociation and Product Formation in NF3 Radio-Frequency Glow Discharges, J. Appl. Phys., 67(6), 2767-2773 (1990).
52.Kudriavtsev N. N., Sukhov A. M., and Shamshev D. P., NF3 Decomposition Behind Shock Waves in the Intermediate Pressure Range, Chem. Phys. Lett., 200(6), 640-642 (1992).
53.Vileno E., LeClair M. K., Suib S. L., Cutlip M. B., Galasso, F. S., and Hardwick, S. J., Thermal Decomposition of NF3 by Ti, Si, and Sn Powders, Chem. Mater., 7(4), 683-687 (1995).
54.Vileno E., LeClair M. K., Suib S. L., Cutlip M. B., Galasso F. S., and Hardwick S. J., Thermal Decomposition of NF3 With Various Oxides, Chem. Mater., 8(6), 1217-1221 (1996).
55.Breitbarth F. W., Berg D., Dumke K., and Tiller H. J., Investigation of the Low Pressure Plasma Chemical Conversion of Fluorocarbon Waste Gases, Plasma Chem. Plasma P., 17(1), 39-57 (1997).
56.Yamamoto T., Chang J. S., Kostov K. G., Okayasu Y., Kato T., Iwaizumi T., and Yoshimura K., NF3 Treatment by Ferroelectric Packed-Bed Plasma Reactor, In: Proceedings of the 2nd International Symposium on Non-thermal Plasma Technology for Gaseous Pollution Control, 162-167 (1997).
57.Chang J. S., Kostov K.G., Urashima K., Yamamoto T., Okayasu Y., Kato T., Iwaizumi T., and Yoshimura K., Removal of NF3 from Semiconductor-Process Flue Gases by Tandem Packed-Bed Plasma and Adsorbent Hybrid Systems, IEEE T. Ind. Appl., 36(5), 1251-1259 (2000).
58.Wang Y. F., Lee W. J., Chen C. Y., Wu Y. P., and Greg Chang- Chien G. P., Reaction ,Mechanisms in Both a CCl2F2/O2/Ar and a CCl2F2/H2/Ar RF Plasma Environment, Plasma Chem. Plasma P., 20(4), 469-494 (2000).
59.Wang Y. F., Tsai C. H., Hsieh L. T., Shih M. L., and Chang W. C., Generating Fine Particles in a Boron Trifluoride RF Plasma Environment, Aerosol Air Qual. Res., 3, 53-59 (2003).
60.Wang Y. F., Wang L. C., Shih M. L., and Tsai C. H., Effects of Experimental Parameters on NF3 Decomposition Fraction in an Oxygen-based RF Plasma Environment, Chemosphere, 57(9), 1157-1163 (2004).
61.Fiala A., Kiehlbauch M., Mahnovski S., and Graves D. B., Model of Point-of-Use Plasma Abatement of Perfluorinated Compounds with an Inductively Coupled Plasma, J. Appl. Phys. 86(1), 152-162 (1999).
62.Key B. D., Howell R. D., and Criddle C. S., Defluorination of Organofluorine Sulfur Compounds by Pseudomonas sp. Strain D2, Environ. Sci. Technol., 32(15), 2283-2287 (1998).
63.Chang M. B. and Yu S. J. An Atmospheric-Pressure Plasma Process for C2F6 Removal, Environ. Sci. Technol., 35(8), 1587-1592 (2001).
64.Yu S. J. and Chang M. B., Oxidative Conversion of PFC Via Plasma Processing With Dielectric Barrier Discharges, Plasma Chem. Plasma P., 21(3), 311-327 (2001).
65.Chang M. B. and Lee H. M., Abatement of Perfluorocarbons with Combined Plasma Catalysis in Atmospheric-Pressure Environment, Catal. Today, 89(1-2), 109-115 (2004).
66.Lee H. M., Chang M. B., and Wu K. Y., Abatement of Sulfur Hexafluoride Emission from Semiconductor Manufacturing Process by Atmospheric-Pressure Plasmas, J. Air Waste Manage., 54(8), 960-970 (2004).
67.Lee H. M., Chang M. B., and Chen C. W., Evaluation of Four Kinds of Nonthermal Plasma Reactor for Abatement of Perfluorocompounds, J. Adv. Oxid. Technol., 8(1), 33-40 (2005).
68.Lee H. M., Chang M. B., and Lu R. F., Abatement of Perfluorocompounds by Tandem Packed-bed Plasmas for semiconductor manufacturing processes, Ind. Eng. Chem. Res., 44(15), 5526-5534 (2005).
69.Chang M. B. and Lee H. M., Emission and Control of Air Pollutants from Semiconductor Manufacturing Processes, Taiwan-American Natural Disaster and Environmental Protection Conference, October 2-4, City of Industry, CA, (2003).
70.Chang M. B., Lee H. M., and Chen H. L., Non-Thermal Plasma Treatment of PFCs, 4th ASIA-Pacific International Symposium on the Basic and Application of Plasma Technologies (APSPT-4), Yunlin, Taiwan (Dec. 11-14, 2005).
71.Lin Kuen-Song, Chang Ni-Bin, and Wang H. Paul, Development and Applications of Plasma Melting Technology for Solid Waste Treatment, Environ.l Protect. Monthly, 15(9), 107-123 (2002).
72.Tsai W. B., Wei T. C., Lin M. C., Wang J. Y., and Chen C. H., The Effect of Radio Frequency Glow Discharge Treatment of Polystyrene on the Behavior of Porcine Chondrocytes in Vitro, J. Biomat. Sci-Polym E. 16(6), 699-714 (2005).
73.Wei T. C., Wang J. Y., Lin P. Y., Fan P. S., and Lai J. Y., Surface Modification of PTFE Membranes Using NH3 and N2/ H2 Plasmas, The Fourth Conference on Membrane Science & Technology (Chungli, Taiwan) (2004).
74.Lee H. M., Chang M. B., and Wei T. C., Kinetic Modeling of Ozone Generation Via Dielectric Barrier Discharges, Ozone-Sci. Eng., 26(6), 551-562 (2004).
75.Wei T. C., Yang C. Y., Liu C. H., and Yiu C. Y., A Comparative Study of CF4/C2H2 and CF4/C2H6 Plasma Deposited Fluorinated Hydrocarbon Films, NDL Communications, 9(4), 33-37 (2002).
76.Wei T. C. and Fang Y. S., Abatement of CF4, C2F6, and CHF3 in Microwave Generated Surface Wave Plasmas, IEEE International Conference on Plasma Science , 312 (2002).
77.Wei T. C., Huang H. F., and Wu C. C., Modeling Study on Plasma Reforming of Greenhouse Gases in a Silent Discharge, Proceedings of the Third International Symposium on Non-Thermal. Plasma Technology for Pollution Control (ISNTPT-3) (Seogwipo, Cheju Island, Republic of Korea) (2001).
78.Lee H. M., Chang M. B., Yu S. J., and Wei T. C., A New Atmospheric-Pressure PFC Abatement Process: Combined Plasma Catalysis, 8th ISESH (Kenting, Taiwan) (2001).
79.Wei T. C., Yang C. C., and Cheng W. C., Global Model of Plasma Chemistry in a High Density Argon/Hydrogen Discharge, J. Chin. Inst. Chem. Engr. 31(5), 477-485 (2000).
80.Hori H., Takano Y., Koike K., Takeuchi K., Einaga H., Decomposition of Environmentally Persistent Trifluoroacetic Acid to Fluoride Ions by a Homogeneous Photocatalytic in Water, Environ. Sci. Technol., 37(2), 418-422 (2003).
81.Shih, M., Lee, W. J., Tsai, C. H., Tsai, P. J., and Chen, C. Y., Decomposition of SF6 in an RF Plasma Environment, J. Air Waste Manage. Assoc., 52(11), 1274-1280 (2002).
82.Moriwaki H., Takagi Y., Tanaka M., Tsuruho K., Okitsu K., and Maeda Y., Sonochemical Decomposition of Perfluorooctanoic Acid, Environ. Sci. Technol., 39(9), 3388-3392 (2005).
83.Beu L., Brown P. T., Latt J., Rapp J. U., Gilliland T., Tamayo T., Harrison J., Davision J., Cheng A., Jewett J., and Worth W., Current State of Technology: Perfluorocompound (PFC) Emissions Reduction; Technology Transfer No. 98053508A-TR, International SEMATECH: Austin, TX (June 1998).
84.Dufaux D. P. and Zachariah M. R., Aerosol Mineralization of Chlorofluorocarbons by Sodium Vapor Reduction, Environ. Sci. Technol., 31(8), 2223-2228 (1997).
85.Burdeniuc J. and Crabtree R. H., Mineralization of Chlorofluorocarbons and Aromatization of Saturated Fluorocarbons by a Convenient Thermal Process, Science, 271(5247), 340-341 (1997).
86.Tajima M., Niwa M., Fujii Y., Koinuma Y., Aizawa R., Kushiyama S., Kobayashi S., Mizuno K., and Ohuchi H., Decomposition of Chlorofluorocarbons in the Presence of Water Over Zeolite Catalyst, Appl. Catal B-Environ., 9(1-4), 167-177 (1996).
87.Karmakar S. and Greene H. L., Oxidative Destruction of Chlorofluorocarbons(CFC11 and CFC12)by Zeolite Catalysts, J. Catal., 138(1), 364-376 (1992).
88.Li G. L., Ishihara T., Nishiguchi H., Moro-oka Y., and Takita Y., Novel Catalysts Effective for Dehydrofluorination of CF3CH3 (HFC143a) into CF2CH2, Chem. Letters(7), 507-508 (1996).
89.Lee M. C. and Choi W., Efficient Destruction of CF4 Through in Situ Generation of Alkali Metals from Heated Alkali Halide Reducing Mixtures, Environ. Sci. Technol., 36(6), 1367-1371 (2002).
90.Ashish B., Tony K., Manus W., Mike C., Kartik R., Mehran M., Sam K., and Sam S., Proc.-Electrochem. Soc. 99-98(Environmental Issues in the Electronics and Semiconductor Industries), 95-99 (1999).
91.Jeon J. Y., Xu X. F., Cjoi M. H., Kim H. Y., and Park Y. K., Hydrolytic Decomposition of PFCs Over AlPO4-Al2O3 Catalyst, Chem. Commun., 9(11), 1244-1245 (2003).
92.張立德、季每,「奈米材料和奈米結構」,滄海書局,初版,91年6月。
93.張立德,「奈米材料Nanomaterials」,五南出版社(2002)。
94.蔡永強,「非彈性X光散射」,物理,26,408-414 (2004)。
95.台灣同步輻射研究中心,「X光粉末繞射及X光吸收光譜暑期訓練課程講義」,2000年7月。
96.台灣同步輻射研究中心,「X光吸收光譜暑期訓練課程講義」,1999年7月。
97.台灣同步輻射研究中心,「SRRC BL17C光束線暨X光吸收光譜術操作說明書」,1999年5月。
98.台灣同步輻射研究中心簡介,2000年。
99.Brey W. S., 19F and 13C Spectra of Fluorinated and Partially Fluorinated Vinyl Alkyi Ethers, J. Fluorine Chem., 126(3), 397-407 (2005).
100.Nanny M. A., Minear R. A., and Leenheer J. A., Nuclear Magnetic Resonance Spectroscopy in Environmental Chemistry, Oxford University Press, New York (1997).
101.Srica V., Muhl J., Jednacak M and Duric A., Determination for Hydrocarbon Type Distribution of Coking Gasoline by n.m.r. Spectrometry, Fuel, 72(6), 775-778 (1993).
102.Lin Kuen-Song, Lee J. F., Yang Y. W., Jang L. Y., Tang M. T., and Liu D. G., Application of Synchrotron Radiation Spectroscopies on Environmental and Molecular Science, NSRRC Newsletter, 55, 10-12 (2004).
103.Conradson S. D., Application of X-ray Absorption Fine Structure Spectroscopy to Materials and Environmental Science, Appl. Spectrosc., 52(7), 252A-279A (1998).
104.Huggins F. K., Shah N., Huffman G. P. and Robertson J. D., XAFS Spectroscopic Characterization of Elements in Combustion Ash and Particulate matter, Fuel Process Technol., 65, 203-218 (2000).
105.Koningsberger D., Mojet B., Miller, J., and Ramaker, D., XAFS Spectroscopy in Catalysis Research: AXAFS and Shape Resonances J. Synchrotron Rad., 6(2), 135-141 (1999).
106.Lytle F. W., The EXAFS Family Tree: a Personal History of the Development of Extended X-ray Absorption Fine Structure. J. Synchrotron Radiat., 6(3), 123-134 (1999).
107.Shirai M., Murakami K., and Nishiyama Y., In Situ EXAFS of Nickel Species during Pyrolysis of Brown Coals., Energ. Fuel., 11(5), 1021-1018 (1997).
108.Torok S. B., Labar J., Schmelling M., and Van Grieken R. E., X-ray Spectrometry., Anal. Chem., 70(12), 495R-517R (1998).
109.Vlaic G., Andreatta D., and Colavita P.E., Characterization of Heterogeneous Catalysts by EXAFS Catal. Today, 14, 261-275 (1998).
110.陳信良,李灝銘,張木彬,「非熱電將結合觸媒系統去除全氟化物之研究」,中央大學環工所(2006)
111.江右君,吳伯昀,「多壁奈米碳管對SF6吸附特性評估」,2007空氣污染控制技術研討會。
112.Zushi Y., Takeda T., and Masunaga S., Existence of Nonpoint Source of Perfluorinated Compounds and Their Loads in the Tsurumi River Basin,Japan, Chemosphere, 71(8), 1566-1573 (2008).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top