跳到主要內容

臺灣博碩士論文加值系統

(3.237.38.244) 您好!臺灣時間:2021/07/24 17:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:詹凱傑
研究生(外文):Kai-Jie Jan
論文名稱:輔助自我解釋之學習同伴提示機制之研發
論文名稱(外文):Investigation of Learning Companion''s Prompting Mechanisms for Self-Explaining
指導教授:周志岳
學位類別:碩士
校院名稱:元智大學
系所名稱:資訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:62
中文關鍵詞:自我解釋提示學習同伴
外文關鍵詞:Self-explainingpromptinglearning companion
相關次數:
  • 被引用被引用:2
  • 點閱點閱:172
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
過去許多自我解釋的研究已經證實自我解釋能幫助學生在學習過程中獲取更多新的知識並增加學生解決問題的學習成效。但並不是每位學生都是良好的自我解釋者,所以如何透過一些輔助機制來提升學生的自我解釋成效是許多學者的研究議題。現有輔助自我解釋的機制大致分為自我解釋訓練與提示兩種,由於目前自我解釋提示策略是尚有待研究的議題,所以本研究在自我解釋的學習過程中利用學習同伴擔任提供提示的角色。本研究研發不同的學習同伴來提供不同的提示機制,包括「每次提供」、「依需求提供」、「依照自我監測工具使用結果」三種不同的提示策略與「領域相關」和「非領域相關」兩種提示內容。本研究並且開發了一個自我解釋學習環境編制系統讓老師編輯出自我解釋學習環境,包括設定具備不同提示機制的學習同伴。本研究也探索學生對不同學習同伴提示機制的喜好,將教材內容分為五部份並搭配不同的提示策略與提示內容,讓學生經歷不同學習同伴的提示機制。本研究利用系統紀錄以及問卷來探索學生對不同學習同伴提示機制的喜好與意見。結果顯示大部分學生較喜歡「依需求提供」提示策略,也就是自己掌控學習同伴是否提供提示與否。另外大部分學生也較喜歡「領域相關」的提示。
Self-explaining has been proved to be beneficial for learning; however, some students cannot self-explain well without training or prompting mechanisms. Researchers proposed many prompting mechanisms, but little research compared these mechanisms. This study developed three learning companions to provide different prompting mechanisms, including three prompting strategies and two kinds of prompting content. This study also created an authoring tool for teachers to build a self-explaining environment and set up the learning companions to provide prompts. This study also investigated the preference of students on different learning companions’ prompting mechanisms through the questionnaire and system record. The results show that most students preferred to the learning companion, which provides prompts when students ask for. In addition, most students also preferred content-related prompts.
摘要 v
Abstract vi
誌謝 vii
大綱目錄 viii
圖目錄 x
表目錄 xi
第一章 背景與相關研究 1
1.1 自我解釋 1
1.2 電腦輔助自我解釋 2
1.3 提升自我解釋的機制 3
1.4 虛擬角色與學習同伴 4
1.5 虛擬角色應用 5
第二章 研究議題 6
2.1 研究動機 6
2.2 研究目的 6
第三章 系統設計 7
3.1 開發環境 7
3.2 自我解釋學習環境學生端(SEE-Client) 8
3.3 自我解釋學習環境編輯工具(SEE-Authoring tool) 13
第四章 實驗設計 22
4.1 教材與評量 22
4.2 實驗流程 23
第五章 實驗結果與分析 25
5.1 問卷 25
5.2 學習成效 30
5.3 系統記錄 31
5.4 綜合分析 32
5.5 結果整理 35
第六章 總結與討論 36
6.1 研究討論 36
6.2 實驗限制 37
6.3 總結 37
6.4 延伸議題 38
第七章 參考文獻 39
第八章 附錄 42
8.1 自我解釋參考列表 42
8.2 教材內容 43
8.3 前測內容 47
8.4 後測內容 48
8.5 問卷內容 49
8.6 提示列表 52
梁宏達(2007) : 非領域相關之電腦輔助自我解釋之設計與實作。私立元智大學資訊工程學系碩士論文。
Aimeur, E., & Frasson, C. (1996). Analyzing a new learning strategy according to different knowledge levels. Computer and Education, 27(2), 115–127.
Aleven, V. & Koedinger, K. R. (2002). An effective metacognitive strategy: learning by doing and explaining with a computer-based cognitive tutor. Cognitive Science, 26, 147-179.
Aleven, V., Pinkwart, N., Ashley, K., & Lynch, C.(2006), “Supporting Self-explanation of Argument Transcripts: Specific v. Generic Prompts”, Proceedings of the Workshop on Intelligent Tutoring System for Ill-Defined Domains at the 8th International Conference on Intelligent Tutoring System,47-55.
Chan, T. W., & Baskin, A. B. (1988). Studying with the prince: The Computer as a Learning Companion. The Proceedings of International Conference of Intelligent Tutoring Systems, ITS’88, June, Montreal, Canada, 194–200.
Chan, T. W., & Baskin, A. B. (1990). Learning companion systems. In C. Frasson, & G. Gauthier (Eds.), Intelligent Tutoring Systems: At the Crossroads of Artificial Intelligence and Education, Chapter 1. New Jersey: Ablex Publishing Corporation.
Chi, M. T. H., Bassok, M., Lewis, M., Reimann, P., & Glaser, R. (1989). Self-explanations: How students study and use examples in learning to solve problems. Cognitive Science, 13, 145-182.
Chi, M. T. H., de Leeuw, N., Chiu, M.H., & LaVancher, C. (1994). Eliciting self-explanations improves understanding. Cognitive Science, 18, 439-477.
Chi, M. T. H. (2000). Self-explaining expository texts: The dual processes of generating inferences and repairing mental models. In R. Glaser (Ed.), Advances in Instructional Psychology, Hillsdale, NJ: Lawrence Erlbaum Associates. 161-238.
Chou, C. Y., Chan, T. W., & Lin, C. J. (2002). An Approach of Implementing General Learning Companions for problem Solving, IEEE Transactions on Knowledge and Data Engineering, VOL. 14, NO. 6, 1376-1386, November/December 2002.
Chou, C. Y., Chan, T. W., & Lin, C. J. (2003). Redefining the Learning Companion:
the part, present, and future of educational agents. Computers & Education, 40 ,255-269.
Conati, C. & VanLehn, K. (2000). Toward computer-based support of meta-cognitive skills: a computational framework to coach self-explanations, International Journal of Artificial Intelligence in Education, 11, 389-415.
Dillenbourg, P., & Self, J. (1992). People power: a human–computer collaborative learning system. C. Frasson, G.Gauthier, & G. McCalla (Eds.). The 2nd International Conference of Intelligent Tutoring Systems, Lecture Notes in Computer Science, 608, Springer-Verlag, 651–660
Graesser, A. C., VanLehn, K., Rose, C., Jordan, P., & Harter, D. (2001). Intelligent tutoring systems with conversational dialogue. AI Magazine, 22, 39–51.
Hausmann, R.G. & Chi, M. T. H. (2002). Can a computer interface support self-explaining?, Cognitive Technology, 7 (1), 4-14.
Hietala, P., & Niemirepo, T. (1998). The Competence of Learning Companion Agents. International Journal ofArtificial Intelligence in Education, 9, 178–192.
Marguerite Roy and Michelene T. H. Chi (2005) Chapter 17: The Self-Explanation Principle in Multimedia Learning, Cambridge Handbook of Multimedia Learning- The Self-explanation Principle
McNamara, D. S. (2004). SERT: self-explanation reading training. Discourse processes, 38 (1), 1-30.
Merrill, M.D., Tennyson, R.D. & Posey, L.O. (1992). Teaching Concepts: An Instructional Design Guide. New Jersey: Educational Technology Publications.
Sleeman, D., & Brown, J. (1982). Intelligent Tutoring Systems. Academic Press.
Wang, W. C., & Chan, T. W. (2000). CAROL5: An Agent-Oriented Programming Language for Developing Social Learning Systems. International Journal of Artificial Intelligence in Education, 11, 1–32.
Weber, G., & Specht, M. (1997). User modelling and adaptive navigation support in WWW-based tutoring systems. In Proc. of User Modeling ''97.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top