跳到主要內容

臺灣博碩士論文加值系統

(34.204.180.223) 您好!臺灣時間:2021/08/01 15:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:郭建甫
研究生(外文):Chien-Fu Kuo
論文名稱:擴增實境環境中視訊手指偵測
論文名稱(外文):A Vision-Based Fingertracking Method For Augmented Reality Environments
指導教授:王任瓚王任瓚引用關係
學位類別:碩士
校院名稱:元智大學
系所名稱:資訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:42
中文關鍵詞:人機互動手指追蹤擴增實境膚色偵測
外文關鍵詞:Human-Computer InteractionFingertrackingAugmented RealitySkin Detection
相關次數:
  • 被引用被引用:0
  • 點閱點閱:294
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:5
本論文提出一個快速的手指偵測及追蹤方法,從一個擴增實境平台上的網路攝影機視訊中即時偵測手指的移動位置。所提的方法主要為先以膚色與影像差這兩種特徵,設計一個兩層式之手部影像偵測方法,在單張視訊影格(frame)中取得手部影像前景區域。針對手部影像區域,我們由手部輪廓點出發,提出一個基於影像區塊前景物件比值來快速找尋指尖輪廓點位置的方法,並由叢聚且相臨的指尖輪廓點計算出每一個手指頭的位置。最後,經由比對手指頭出現在連續視訊影格的相對位置關係,來過濾那些被誤判為手指頭位置的雜訊,讓手指頭位置的偵測可以更正確且穩定。
根據系統的實驗結果,可以發現所提的方法在手指的偵測及追蹤正確性都有不錯的效果,不但可以同時偵測多隻手在不同方向的多個手指頭位置,且在不同的環境光源下操作也還算穩定。本研究所設計的快速手指偵測機制,提供使用者發展利用徒手操作應用程式之基本能力,未來將可以運用在以視訊為基礎的人機互動,或擴增實境等相關應用程式之友善易學之選取工具或操作介面之設計。
In this thesis, we propose a fast finger tracking method for detecting the positions of fingertips from the video captured by the camera fixed in the platform of an augment reality environment. A two-level hand detection method based on the techniques of image differencing estimation and skin color detection is designed to segment the region of hand in an image frame. The fingertips detecting process is then conducted within the scope of the hand region. It consists of the following three steps: (1) hand boundary detection, (2) fingertip border detection based on the ratio of foreground object of an image block, and (3) accurate fingertip location evaluation. A post-processing step using the positions of fingertips detected in consecutive image frames is also designed to filter out the noise finger positions.
The experiment results show that the performance of the proposed method is acceptable. It successfully detects the positions of multiple fingertips in any direction under various lighting conditions. The proposed finger tracking method endows the ability of manipulating computer applications using human hands without any extra electronic equipment. It can be used as a basic tool for establishing friendly human-computer interfaces and easy-to-learn augmented reality applications.
目錄
摘要 i
ABSTRACT ii
誌謝 iii
目錄 iv
圖目錄 v
第一章 序論 1
1.1背景 1
1.2研究動機 2
第二章 相關研究 4
2.1 J.M. Regh 的手部追蹤方法 4
2.2 H. Koike的即時手指追蹤 4
2.3 C. Hardenberg的手指追蹤方法 6
2.4 S. Malik的手部與手指即時追蹤互動技術 7
2.5 X. Wang的即時手部追蹤方法 7
2.6 其他相關研究 9
2.6.1 手部區域切割 9
2.6.2 色彩空間分析 9
2.6.3 手指偵測 10
第三章 所提方法 11
3.1 系統架構與流程 11
3.2 手部影像偵測 13
3.2.1 膚色偵測 14
3.2.2 影像差 16
3.2.3 兩層式之手部影像偵測方法 18
3.2.4 取得關注區域 19
3.3 手指偵測 20
3.3.1手部輪廓擷取 20
3.3.2 指尖偵測 20
3.3.3 計算指尖位置 22
3.4手指追蹤 23
第四章 實驗與測試結果 24
4.1 實驗環境與測試資料來源 24
4.2 實驗結果 24
4.3 辨識錯誤的分析 37
第五章 結論與未來研究 39
參考文獻 40
1.J.M. Rehg and T. Kanade, “Digiteyes : vision-based hand tracking for human-computer interaction,” IEEE Workshop on Motion of Non-rigid and Articulated Objects, pp. 16?22, 1993.
2.J.L. Crowley, “Finger Tracking as an Input Device for Augmented Reality,” proceedings of the International Workshop on Face and Gesture Recognition, 1995.
3.S. Fraser, “Video-Augmented Environments,” http://www.sigchi.org/chi96/proceedings/papers/Stafford-Fraser/qsf_txt.htm, 1996.
4.X. Zhu, J. Yang and A. Waibel, “Segmenting Hands of Arbitrary Color,” Proceedings of the Fourth IEEE International Conference on Automatic Face and Gesture Recognition, pp. 446, 2000.
5.C. Hardenberg and F. Bérard, “Bare-Hand Human-Computer Interaction,” ACM International Conference Proceeding Series, Vol. 15, pp. 1?8, 2001.
6.C. Hardenberg, “Fingertracking and Handposture Recognition for Real-Time Human-Computer Interaction,” http://iihm.imag.fr/hardenbe/, 2001.
7.H. Koike, Y. Sato and Y. Kobayashi, “Integrating paper and digital information on EnhancedDesk: a method for realtime finger tracking on an augmented desk system,” ACM Transactions on Computer-Human Interaction, vol. 8, pp. 307?322, 2001.
8.H. Koike, K. Oka, and Y. Sato, “Real-time fingertip tracking and gesture recognition,” IEEE Computer Graphics and Applications, vol. 22, pp. 64-71, 2002.
9.I.S. Hsieh, K.C. Fan and C. Lin, “A statistic approach to the detection of human faces in color nature scene,” Pattern Recognition , Vol. 35, pp. 1583?1596, 2002
10.B. Stenger, “Model-Based Hand Tracking Using A Hierarchical Bayesian Filter,” IEEE transactions on pattern analysis and machine intelligence, vol. 28, pp. 1372, 2004.
11.C. Manresa, J. Varona, R. Mas and Francisco J. Perales, “Hand Tracking and Gesture Recognition for Human-Computer Interaction,” Electronic Letters on Computer Vision and Image Analysis, Vol. 5, No 3, pp. 96?104, 2005.
12.S. Conseil, S. Bourennane and L. Martin, “Three Dimensional Fingertip Tracking in Stereovision,” Lecture Notes in Computer Science, vol. 3708, pp. 9?16, 2005.
13.A.M. Burns and B. Mazzarino, “Finger Tracking Methods Using EyesWeb,” Lecture Notes in Computer Science, vol. 3881, pp. 156?167, 2006.
14.F. Gasparini and R. Schettini, “Skin segmentation using multiple thresholding,” SPIE, vol. 6061, pp. 60610F.1?60610F.8, 2006.
15.L.W. Chan, Y.F. Chuang, Y.W. Chia, Y.P. Hung and J. Hsu, “A New Method for Multi-finger Detection Using a Regular Diffuser,” Lecture Notes in Computer Science, vol. 4552, pp. 573?582, 2007.
16.M.A. Okkonen, V. Kellokumpu, M. Pietikäinen and J. Heikkilä, “A Visual System for Hand Gesture Recognition in Human-Computer Interaction,” Lecture Notes in Computer Science, vol. 4522, pp. 709–718, 2007.
17.S. Reifinger, F. Wallhoff, M. Ablassmeier, T. Poitschke and G. Rigoll, “Static and Dynamic Hand-Gesture Recognition for Augmented Reality Applications,” Lecture Notes in Computer Science, vol. 4552, pp. 728?737, 2007.
18.X. Wang, X. Zhang and G. Dai, “Tracking of deformable human hand in real time as continuous input for gesture-based interaction,” Association for Computing Machinery, pp. 235–242 , 2007.
19.P. Song, S. Winkler, S.O. Gilani and Z.Y. Zhou, “Vision-Based Projected Tabletop Interface for Finger Interactions,” Lecture Notes in Computer Science, vol. 4796, pp. 49?58, 2007.
20.G. Hillebrand, M. Bauer, K. Achatz and G. Klinker, “Inverse Kinematic Infrared Optical Finger Tracking,” http://www.ar-tracking.de , 2006.
21.D.W. Ren and J.T. Li, “Vision–Based Dynamic Tracking of Motion Trajectories of Human Fingertips,” Lecture Notes in Control and Information Sciences, vol. 362, pp. 429–435, 2007.
22.C. Kerdvibulvech and H. Saito, “Vision-Based Guitarist Fingering Tracking Using a Bayesian Classifier and Particle Filters,” Lecture Notes in Computer Science, vol. 4872, pp. 625–638, 2007.
23.S. Malik, “Real-time Hand Tracking and Finger Tracking for Interaction,” CSC2053F Project Report, 2003.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊