跳到主要內容

臺灣博碩士論文加值系統

(18.205.192.201) 您好!臺灣時間:2021/08/06 05:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許育棋
研究生(外文):Yu-Chi Hsu
論文名稱:基於疊代法多次分割圖像應用在閥值分割
論文名稱(外文):Image segmentation by Iterative Method with multi-split
指導教授:林啟芳
指導教授(外文):Chi-Fang Lin
學位類別:碩士
校院名稱:元智大學
系所名稱:資訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:32
中文關鍵詞:直方圖疊代法閥值
外文關鍵詞:Histogram partitionIterative methodThresholding
相關次數:
  • 被引用被引用:0
  • 點閱點閱:182
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
閥值分割(thresholding)是影像處理中常見的前處理(preprocessing)步驟,分割結果的好壞往往影響後續處理的準確度。常用的分割演算法有最大類間方差(variance of between class)法、閥值分割疊代(iterative)法、最大熵值(entropy)法、中心群聚(cluster)分割法、模糊(Fuzzy)閥值分割法等,而處理的區域範圍又可分為全區域閥值分割與局部區域閥值分割。一般而言,上述演算法比較適合應用在大面積目標物的提取(extraction),但如果所要處理的目標物較小,例如在MRI (magnetic resonance imaging)影像裡的顯影劑目標,或在衛星影像中的細長道路,其目標物佔整體影像的面積比例較小,所得分割效果往往很差。原因是這類目標物的像素太少,容易被錯分為背景。但這類目標物大多具有高亮度的特徵,因此本論文提出一個全區域多次分割閥值法,以簡單步驟來提取這類小面積且具高亮度特徵的目標物,提供給後續步驟作進一步處理。
Gray level thresholding it is image prepositive process,a commonly used one perform algorithm have Otsu ,Iterative Method, Tsallis entropy. And the histogram regional range with global regional and dynamic regional, generally speaking can get the good result on above-mentioned performing algorithms and applying the treatment that is gray level thresholding to the image.
But this kind of method drew the smaller goal thing, for instance: Small goal developer, road to the satellite image in MRI image of medical treatment, the results of cutting apart of its background and goal thing are bad, its reason is looking like prime and few for the characteristic of this kind of goal thing, it is apt to make the goal thing divided into the background by mistake.
Developer part (generally small blocks) of the picture MIR image , road, satellite of image take image to be area getting little, it is difficult for the goal thing to cut apart, and this kind of goal thing is mostly high light (for image) Attribute, utilize goal to be thing little on the basis of the thesis having luminance high characteristic, propose drawing the goal thing by way of cutting apart many times, after abstraction of valve value, characteristics including goal thing are the more, and irrelevant background is the fewer in two value images of the income, have healed and can reduce the wrong result for the follow-up treatment procedure step.
目 錄
誌 謝...............................................…..i
中文摘要................................................ii
英文摘要................................................iii
目 錄...................................................iv
圖 目 錄................................................v
第一章 緒論………………………………....….…………………1
1.1 研究動機………………………………………………………..1
1.2 相關研究………………………………………………………..1
1.3 研究方法概述……………………………………………......4
1.4 論文架構………………………………………………………..4
第二章 閥值分割法觀念介紹………..……………………………5
2.1 前言……………………………………………………………..5
2.2 Otsu分割法…….………............……………………..5
2.3 閥值分割疊代法…….………………………………..……….7
2.4 Tsallis entropy分割法…….……………………..……….9
第三章 多段式閥值分割疊代法…………………………………..10
3.1 前言……………………………………………………………10
3.2 方法內容......………………………………………………11
第四章 實驗結果與討論……………………………..………...17
第五章 結論與未來研究方向…………………......……………30
5.1 結論………………………………………..………..………30
5.2 未來研究………………………......……………..………30
參考文獻……………………………………………………………31
圖 目 錄
圖1、Otsu法分割示意圖。……………..…………………………8
圖2、多次分割示意圖。………………………..…………………11
圖3、系統處理流程圖。…………………..………….…..……12
圖4、過度分割結果與示意圖。……………………….…..……14
圖6、多次分割閥值與變化率。…………………………………16
圖7、腦部MRI切片顯影(一)。……...............……..……19
圖8、腦部MRI切片顯影(二)。……..……........……………20
圖9、腦部MRI切片顯影(三)。……..…..………….…………21
圖10、乳房顯影。………………….......….......………..22
圖11、金屬異物。………………………..………...…………23
圖12、血管顯影。………………………………....…………..24
圖13、血管顯影與噪聲干擾。……………………...………..25
圖14、綠色草皮、褐色草皮與道路。…………………………..26
圖15、深綠色樹林與道路。……………………….……………27
圖16、沙漠與道路。…………….............………………28
圖17、剪報文字。………………………...……….……………29
[1] N. Otsu, “A threshold selection method from gray level histograms,” IEEE Transactions on Systems, Man, and Cybernetics, pp. 62–66, 1979.
[2] T. W. Ridler and S. Calvard, “Picture thresholding using an iterative selection method,” IEEE Transactions on System, Man, and Cybernetics, pp. 630–632, 1978.
[3] 謝林海、劉相濱、何昭清, “基於最佳閥值和輪廓提取的邊緣檢測法,”計算機與現代化, 第10期, pp. 117–118,121, 2007.
[4] M. Portes, I. A. Esquef, A. R. Gesualdi Mello, and M. Portes, “Image thresholding using Tsallis entropy, ” Pattern Recognition Letters, 25, pp. 1059-1065, 2004.
[5] J. N. Kapur, P. K. Sahoo and A.K.C. Wong, “A new method for gray-level picture thresholding using the entropy of the histogram,” Computer Vision, and Graphics Image Processing, Vol. 29, pp. 273–285, 1985.
[6] 韓建濤、姜衛東、 陳曾平, “基于Otsu準則及圖像熵的局部遞歸分割算法研究,”紅外線技術, Vol. 6, No. 26, pp. 89–92, 2004.
[7] C. Chinrungrueng and C. H. Sequin, “Optimal adaptive K-means algorithm with dynamic adjustment of learning rate,” IEEE Transactions on Neural Networks, Vol. 6, N0. 1, pp. 157–169, 1995.
[8] K. Krishna and M. N. Murty, “Genertic K-means algorithm” IEEE Transactions on Systems, Man, and Cybernetics, Vol. 29, No. 3, pp. 433–439, 1999.
[9] Orlando J. Tobias and Rui Seara., “Image segmentation by histogram thresholding using fuzzy sets,” IEEE Transactions on Image Processing, Vol. 11, No. 12, pp. 1457–1465, 2002.
[10] Silvano Di Zenzo, Luigi Cinque, and Stefano Levialdi, “Image thresholding using fuzzy entropies,” IEEE Transactions on System, Man, and Cybernetics, Vol. 28, No. 1, pp. 15–23, 1998.
[11] H. D. Cheng, C. H. Chen, H. H. Chiu, and Huijuan Xu., “Fuzzy homogeneity approach to multilevel thresholding, ” IEEE Transactions on Image Processing, Vol. 7, No. 7, pp. 1084–1088, 1998.
[12]M. K. Quweider, J. D. Scargle and B. Jackson, “Grey level reduction for segmentation, threshholding and binarisation of images based on optimal partitioning on an interval,” IEEE Transactions on Image Processing, Vol. 1, No. 2, pp.103–111, 2007.
[13]Bir Bhanu, Sungkee Lee and John Ming, “Adaptive Image Segmentation Using a Genetic Algorithm,” IEEE Transactions on System, Man, and Cybernetics, Vol. 25, No. 12, pp.1543–1567, 1995.
[14]Karl Segl and Hermann Kaufmann, “Detection of Small Objects From High-Resolution Panchromatic Satellite Imagery Based on Supervised Image Segmentation,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 39, No. 9, pp.2080–2083, 2001.
[15]Jong-Sen Lee and Karl Hoppel, “Principal Components Transformation of Multifrequency Polarimetric SAR Imagery,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 30, No. 4, pp.686–696, 1992.
[16] 馮德俊、湯家法、李永樹, “基于遙感的土地利用變化信息影像分割研究,”遙感信息, pp.25-28, 2005.
[17] J. W. Funck, Y. Zhong, D. A. Butler, C. C. Brunner and J. B. Forrer, “Image segmentation algorithms applied to wood defect detection,” Computers and Electronics in Agriculture, 41, pp. 157–179, 2003.
[18]李朝鋒、貞生根、許磊, 遙感影像智能處理, 電子工業出版社, Sep, 2007.
[19] 潘國樑, 遙測學大綱, 成陽出版社股份有限公司, 2006.
[20] 楊龍士、雷祖強、周天穎, 遙感探測理論與分析實務, 電文魁資訊股份有限公司, 2006.
[21] 王愛玲、葉明升、鄭秋香, Matlab R2007 圖像處理技術與應用, 電子工業出版社, 2008.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top