跳到主要內容

臺灣博碩士論文加值系統

(3.237.38.244) 您好!臺灣時間:2021/07/26 11:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:詹益發
研究生(外文):Yi-Fa Chan
論文名稱:網站部落格之顧客口碑評論分析研究-以台灣咖啡飲料市場為例
論文名稱(外文):The Analysis of Customer Generated Opinion from Web Blog– The Case Study of Coffee Beverage Market in Taiwan
指導教授:邱昭彰邱昭彰引用關係
學位類別:碩士
校院名稱:元智大學
系所名稱:資訊管理學系
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:42
中文關鍵詞:消費者自組媒體(CGM)產品評價特徵詞萃取對應分析定位圖
外文關鍵詞:Consumer-Generated Media(CGM)OpinionsCharacteristic-Word ExtractionCorrespondence AnalysisPositioning map
相關次數:
  • 被引用被引用:8
  • 點閱點閱:955
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:3
網路已成為聚集消費者評論的極佳環境,越來越多的消費者使用網路來表達
其個人對產品的看法,然而消費者發表的產品評論對企業而言是至關寶貴重要的
資訊,因為這些訊息是有關於客戶對產品的關注與使用經驗。
為了協助企業能夠確切掌握消費需求趨勢與脈動,本研究提出以擷取網路產
品評價為基礎的研究架構,透過對網路資訊的偵測與蒐集機制,將所擷取的網路
文章內容進行中文斷詞處理、特徵詞萃取及挑選出產品特徵詞,最後以各品牌產
品的特徵詞或片語為基礎製作對應表並進行對應分析。
本實驗利用二維定位圖呈現類別資料之相對位置,協助決策者能夠在一張框
架地圖上識別出市場關鍵層面、消費者需求、產業間之競爭態勢及脈動……等要
素,以提昇企業之競爭優勢。研究的結果發現,在咖啡品牌部份,實驗的咖啡品
牌被分為四個群組,其中兩個群組為相互競爭,而在產品特徵詞部份,高密度聚
集的特徵詞被分為二個族群,其一為將咖啡視為“生活品質附屬品”的品牌個性族
群,另一族群為“愛玩、夜不眠”的年輕夜貓族群。
The conducive environment provided by the Internet Website has eventually transformed it
into centralized source for assembling consumer’s feedback and comments. As increasing
number of consumers are utilizing the Internet Website to express their personal views about
various products, as such, these views or opinions are invaluable to business organizations.
From the perspective of such business organizations, these information will review the preferred
products in the market as well as consumers’ usage experience.
For the purpose of assisting business organizations to captivate consumer’s demand and
preference trend, this experiment will enable us to excavate or extract product comments from
the various websites as the experimental infrastructure. Via surfing and downloading such
information on these websites, we will then perform Chinese Word Segmentation,
Characteristic-Word Extraction and select the characteristic word of the product from the
extracted web context. Lastly, we would based on the Characteristic-Word of various brands or
terms as the basis to construct the Co-occurrence data and consequently enable us to perform
Corresponding Analysis.
In this experiment, we had utilized the Two-dimensional Positioning Map to present
similar types of information in opposite positions. This, will allow business organizations view
the following on a single mapping framework: distinguishing markets based on critical factors,
consumer’s demand, competitor’s product trend e.t.c.. Therefore, will increase the
competitiveness of business organizations. The end result derived from the experiment
performed on a particular brand of coffee can be classified into 4 groups. Of which, 2 of the 4
Groups, are very competitive in terms of the product’s characteristic word. As highly intensive
characteristic word can be divided 2 groups. Firstly, coffee can be regarded as a “supplementary
product in our daily necessities”. Secondly, coffee can also be considered “essential product to
those young and playful night party goers”.
書名頁 ............................................................................................... i
論文口試委員審定書......................................................................... ii
授權書.............................................................................................. iii
中文摘要 .......................................................................................... iv
英文摘要.......................................................................................... v
誌謝................................................................................................. vi
目錄................................................................................................ vii
表目錄 .............................................................................................. ix
圖目錄 .............................................................................................. .x
第一章、 緒論 ............................................... 1
第二章、 文獻探討 ........................................... 3
第一節、 消費者自組媒體(CGM)與部落格 .................... 3
壹、 消費者自組媒體 ................................ 3
貳、 部落格 ........................................ 3
參、 部落格的分類與企業的應用 ...................... 4
第二節、 網路資訊的蒐集與文本處理 ....................... 5
壹、 網路資訊的蒐集 ................................ 5
貳、 文本處理 ...................................... 5
第三節、 對應分析 ....................................... 7
壹、 主成份分析、多元尺度法、對應分析之說明與比較 .. 8
貳、 對應分析的特性 ............................... 10
第三章、 研究方法 .......................................... 11
第一節、 研究設計與流程 ................................ 11
第二節、 研究架構各步驟之細部說明 ...................... 12
壹、 步驟一 資訊偵測與蒐集 ....................... 12
貳、 步驟二 文本處理 ............................. 14
參、 步驟三 對應分析 ............................. 16
第四章、 實驗設計 .......................................... 20
第一節、 研究資料的來源、選擇與蒐集 .................... 20
壹、 研究資料的來源 ............................... 20
貳、 研究資料的選擇 ............................... 21
參、 研究資料的蒐集 ............................... 22
第二節、 實驗結果 ...................................... 22
壹、 特徵詞萃取結果 ............................... 23
貳、 對應分析(Correspondence Analysis) ............ 23
第三節、 實驗結果評估 .................................. 28
壹、 咖啡品牌部份 ................................. 28
貳、 產品特徵詞部份 ............................... 29
第四節、 研究限制 ...................................... 29
壹、 資料蒐集部份 ................................. 29
貳、 文字探勘部份 ................................. 29
第五章、 討論 .............................................. 30
壹、 品牌產品行銷策略 ............................. 32
貳、 傳統媒體與CGM 的成效 ......................... 33
第六章、 結論與未來展望 .................................... 34
第一節、 研究結論 ...................................... 34
第二節、 未來研究與建議 ................................ 35
參考文獻………………………………………………………………… 36
附錄A 部落格的用法清單…………………………………………… 42
中文文獻
1. Jeremy Wright 著,部落格行銷:百萬顧客同步發聲,開啟雙向溝通的新
消費時代,洪慧芳譯,初版,臺北市,麥格羅.希爾發行,2006 年。
2. Emanuel Rosen 著,口碑行銷:如何引爆口耳相傳的神奇威力,林德國
譯,初版,臺北市,遠流發行,2001 年。
3. Fievet, C., & Turrettini, E.,著, 誰沒部落格! Blog story ,施瑞瑄譯,初
版,臺北市,商周出版,家庭傳媒城邦分公司發行,2006。
4. 維 基百科, “ 搜索引擎” , 上網日期: 2009 年 2 月 27 日,
http://zh.wikipedia.org/wiki/%E6%90%9C%E7%B4%A2%E5%BC%95%E
6%93%8E
5. 中央研究院平衡語料庫,上網日期:2009 年 03 月 10 日,
http://rocling.iis.sinica.edu.tw/CKIP/20corpus.htm
6. 創市際市場研究顧問,http://www.insightxplorer.com/index.html

英文文獻
1. Blood, R., "The Weblog Handbook: Practical Advice on Creating and
Maintaining Your Blog," Cambridge, MA: Perseus Publishing, 2002.
2. Bai,X., Sun,J., Che,H., and Wang, J., "Towards Knowledge Extraction from
Weblogs and Rule-Based Semantic Querying, " A. Paschke and Y. Biletskiy
(Eds.): RuleML 2007, LNCS 4824, pp. 215–223, 2007.
3. Blasius, J., Greenacre, M., Groenen, P.J.F., Velden, M., "Special issue on
correspondence analysis and related methods," Computational Statistics
and Data Analysis 53 (8), pp. 3103-3106, 2009
4. Charron, C., Favier, J., and Li, C., "Social Computing: How Networks
Erode Institutional Power, and What to Do about It," Forrester Customer
Report, 2006.
5. Cheong, F. C., "Internet Agents: Spiders, Wanderers, Brokers, and Bots,
"New Riders Publishing, Indianapolis, Indiana, USA, 1996.
6. Chang, Y. C., Chen, S. M., and Liau,C. J., "Multilabel text categorization
based on a new linear classifier learning method and a category-sensitive
refinement method," Expert Systems with Applications, vol. 34, No. 3,
pp.1948-1953, 2008.
7. Cohen, W. W., & Singer, Y., "Context-sensitive learning methods for text
categorization," ACM Transactions on Information Systems, 17(2),
pp.141-173, 1999.
8. Caropreso, M. F., Matwin, S., & Sebastiani, F., "A learner-independent
evaluation of the usefulness of statistical phrases for automated text
categorization," In A. G. Chin(Ed.), Text databases and document
magagment:Theory and practice,Philadelphia, PA:Idea Group Publishing.pp.78-102, 2001.
9. Clausen, S. E., "Applied correspondence analysis an introduction
Sten-Erik Clausen, " Thousand Oaks, CA Sage Publications, 1998.
10. Cattell, R. B., "The scree test for the number of factors," Multivariate
behavioral research. 1, pp. 245-276, 1966.
11. Dearstyne, B.W., "Blogs-the new information revolution? " Information
Management Journal, 39(5), pp.38-44, 2005.
12. Dumais, S. T., Platt, J., Heckerman, D., & Sahami, M., "Inductive learning
algorithms and representation for text categorization," In Proceedings of
CIKM-98, 7th ACM international conference on information and
knowledge management, Bethesda, MD, pp.148-155, 1998.
13. Dai, Y.B., Khoo, S.G.T., Loh, T.E., "A new statistical formula for Chinese
word segmentation incorporating contextual information," In: Proc. of the
22nd ACM SIGIR Conf. on Research and Development in Information
Retrieval, pp. 82–89, 1999.
14. Ding , X., Liu, B., Yu, P. S., "A Holistic Lexicon-Based Approach to
Opinion Mining," WSDM''08 - Proceedings of the 2008 International
Conference on Web Search and Data Mining, pp. 231-239, 2008.
15. Fuhr, N., & Buckley, C., "A probabilistic learning approach for document
indexing ," ACM Transactions on Information Systems, 9(3), pp.223-248,
1991.
16. Greenacre, M.J., "Practical correspondence analysis,"in Barnett, V. (ed.),
Interpreting Multivariate Data, Wiley, U.K., pp.119-46, 1981.
17. Green, P. E., Catherine, M. S., and Karen, M . P., "A Reduced-Space
Approach to the clustering of Categorical Data in Market Segmentation,"Journal of the Market Research Society,30(3), pp. 267~288, 1988.
18. Greenacre, M., "Correspondence Analysis in Practice," London: Academic
Press, 1993.
19. Greenacre, M. J., "Correspondence Analysis in Practice, second ed,"
Chapman & Hall / CRC Press, London. Published in Spanish translation
in 2008 by the Fundación BBVA, Madrid, 2007.
20. Greenacre, M., "Power transformations in correspondence analysis,"
Computational Statistics and Data Analysis 53 (8), pp. 3107-3116, 2009.
21. Joachims, F. T., & Singer, Y., "Text categorization with support vector
machines:Learning with many relevant features," In Proceedings of the
10th European conference on machine learning, Chemnitz, Germany,
pp.137-142, 1998.
22. Javalgi, R., Whipple, T., Mc, M. M., and Edick, V., "Hospital Image:A
Correspondence Analysis Approach," Journal of Health Care Marketing,
12(4), pp.34~41, 1992.
23. Krishnamurthy, S., The Multidimensionality of Blog Conversations: The
Virtual Enactment of September 11, In Maastricht, The Netherlands,
Internet Research 3.0, 2002.
24. Kaiser, H. F., "The application of electronic computers to factor analysis, "
Educational and Psychological Measurement, 20, pp.141-151, 1960.
25. Kruskal, J. B., "Multidimensional Scaling by Optimizing Goodness of
Fit to a Non Metric Hypothesis," Psychometrika, 29, pp.1-27, 1964.
26. Liu, J.S., Lee, C.Y., "Extracting Structured Subject Information from
Digital Document Archives," In: Sugimoto, S., Hunter, J., Rauber, A.,
Morishima, A. (eds.) ICADL 2006. LNCS, vol. 4312, pp.141–150, 2006.
27. Mortensen, T., and Walker, J., "Blogging Thoughts: Personal Publication
as an Online Research Tool," Paper presented at the Researching ICTs in
Context, Morrison, 2002.
28. Mei, Q., Liu, C., Su, H., and Zhai, C. X., "A Probabilistic Approach to
Spatiotemporal Theme Pattern Mining on Weblogs," In Proceedings of
the 15th International Conference on World Wide Web, pp. 533-542, 2006.
29. Merelo-Guervos, J. J., Prieto, B., Rateb, F., and Tricas, F., "Mapping
Weblog Communities," http://arxiv.org/pdf/cs.NE/0312047,Data Accessed:
December 25, 2006.
30. Nielsen-online, "About Consumer-Generated Media (CGM),
"http://www.nielsen-online.com/resources.jsp?section=about_cgm ,上網
日期:2008 年 12 月 8 日
31. Salton, G., and Gill, M., " Introduction to Modern Information Retrieval,"
McGraw-Hill, New York, USA, 1983.
32. Sun, M.S., Xiao, M., Zou, J.Y., "Chinese Word Segmentation without
Using Dictionary Based on Unsupervised Learning Strategy," Chinese
Journal of Computers 27(6), pp.736–742 , 2004.
33. Velden, M., Groenen, P.J.F., Poblome, J., "Seriation by constrained
correspondence analysis: A simulation study," Computational Statistics
and Data Analysis 53 (8), pp.3129-3138, 2009.
34. Wang, F., Carley, K. M., Zeng, D., and Mao, W., "Social Computing: From
Social Informatics to Social Intelligence," IEEE Intelligence Systems,
Vol. 22, No. 2, pp. 79-83, 2007.
35. Yang, Y., & Pedersen, J. O., "A comparative study on feature selection in
text categorization," In Proceedings of the 14th international conference on machine learning, Nashville, TN, pp.412-420, 1997.
36. Yu, H.K., Zhang, H.P., Liu, Q., Lv, X.Q., Shi, S.C., "Chinese named
entity identification using cascaded hidden Markov model, " Journal on
Communications 27(2), pp.87–94, 2006.
37. Zhan J., Loh, H.T., Liu, Y., "Gather customer concerns from online
product reviews - A text summarization approach," Expert Systems With
Applications, pp.2107-2115, 2009.
38. Zeng, D., Wei, D., Chau, M., Wang, F., "Chinese Word Segmentation for
Terrorism-Related Contents ," Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics) 5075 LNCS, pp.1-13, 2008.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top