跳到主要內容

臺灣博碩士論文加值系統

(3.236.110.106) 您好!臺灣時間:2021/07/27 20:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:周晏弘
研究生(外文):Yen-Hung Chou
論文名稱:結合隱藏式馬可夫模型與高斯混合模型於12導程心電圖之冠心症疾病辨識
論文名稱(外文):A Hybrid System with Hidden Markov Models and Gaussian Mixture Models for Myocardial Infarction Classification with 12-Lead ECGs
指導教授:張百棧張百棧引用關係
學位類別:碩士
校院名稱:元智大學
系所名稱:資訊管理學系
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:73
中文關鍵詞:隱藏式馬可夫模型高斯混合模型冠心症疾病辨識
外文關鍵詞:Hidden Markov ModelsGaussian Mixture ModelsMyocardial Infarction Classification
相關次數:
  • 被引用被引用:1
  • 點閱點閱:207
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
此論文中,將針對12導程心電資料進行冠心症疾病的模型建立,在臨床醫學中,透過心電圖,醫師可以第一時間發現病人所患的心臟疾病為何並給予正確的治療。目前心電儀器所提供的預測準確率不高,還有醫師經驗及個人主觀,心電圖資料格式的不統一,所以在心電醫療研究這方面一直有所瓶頸。而透過之前的研究,已經將心電圖病歷進行解碼,所以可以自行開發相關醫療應用。此研究將利用隱藏式馬可夫模型針對冠心症疾病,進行疾病預測的模型建立,透過此法,我們可以找出隱藏在心電圖中冠心症的特徵值。本實驗將針對冠心症中的心肌梗塞作為研究目標,資料數量為真實患有心肌梗塞的病歷500份,而無罹患心臟疾病的病歷515份。首先透過患有疾病的心電資料,將建立從Lead V1到Lead V4導程的隱藏式馬可夫模型,接著將訓練好的模型,進行測試資料的相似值比對。將患有心肌梗塞疾病與無患心臟疾病測試資料的相似值資料,放入高斯混合模型當中分類,再比較其準確率,來證實我們的方法具有醫學上的幫助,可以幫助醫生在診斷時,提供更佳的診斷意見,縮短搶救的時間。而經過辨識之後,我們得到最高準確率為83%,因真實資料變異大,所以此研究準確率不及傳統研究高,但跟傳統的研究相比,卻具有更高的實用價值,在未來的研究,可利用別的方法加入,提高準確率,給予醫學界更大的幫助。
This study presented a new diagnosis system with integrating 12-lead ECG data into a density model for increasing accuracy rate and flexibility of diseases detection. A hybrid system with HMMs and GMMs was employed for data classification. For myocardial infarction, data of lead-V1, V2, V3 and V4 were selected and HMMs were used not only to find the ECG segmentations but also to calculate the log-likelihood value which was treated as statistical feature data of each heartbeat’s ECG complex. The 4-dimension feature vector was clustered by GMMs and different numbers of distribution (disease and normal data) were examined in experiment. The main idea in this study relied on the multiple ECG channels which could be combined. There were total 1015 samples of heartbeats from clinical data, including 500 data with myocardial infarction and 515 normal data. The accuracy of this diagnosis system achieved 83%.
目錄
書名頁.....................................................................i
論文口試委員審定書....................................................ii
授權書..............................................................iii
中文摘要 .................................................................. iv
英文摘要 ................................................................... v
誌謝 ...................................................................... vi
目錄 ..................................................................... vii
表目錄 ..................................................................... x
圖目錄 .................................................................... xi
第一章. 緒論 .............................................................. 1
1.1 研究背景與動機 .................................................... 1
1.2 研究目的 .......................................................... 3
1.3 研究方法 .......................................................... 3
1.4 研究架構與流程 .................................................... 4
第二章. 文獻探討 .......................................................... 6
2.1 心電圖相關研究 .................................................... 6
2.1.1 心臟活動相關介紹 .............................................. 6
2.1.2 冠狀動脈疾病與心肌梗塞相關研究 ................................ 7
2.1.3 12 導程心電圖相關研究 ......................................... 9
2.2 隱藏式馬可夫模型相關研究 ......................................... 15
2.2.1 隱藏式馬可夫模型問題一 ....................................... 18
2.2.2 隱藏式馬可夫模型問題二 ....................................... 22
2.2.3 隱藏式馬可夫模型問題三 ....................................... 25
2.3 高斯混合模型相關研究 ............................................. 28
viii
2.3.1 高斯混合模型介紹 ............................................. 28
2.3.2 最大相似度估計(Maximum Likelihood Estimation) .............. 29
2.3.3 Expectation Maximization 演算法(簡稱EM 演算法) ............. 30
2.4 支持向量機相關研究(Support Vector Machine,簡稱SVM) ............. 34
2.4.1 超平面分類器(Hyperplane classifier) ........................ 34
2.4.2 非線性支持向量機器 ............................................. 37
第三章. 研究方法 ....................................................... 38
3.1 研究資料之範圍 ................................................... 38
3.2 研究之流程圖 ..................................................... 38
3.3 十二導程心電圖資料庫 ............................................. 40
3.4 心電訊號雜訊處理 ................................................. 41
3.5 心跳圖形取樣階段 ................................................. 42
3.6 隱藏式馬可夫模型訓練 ............................................. 43
3.7 建立病例訓練資料表 ............................................... 45
3.8 高斯混合模型建立 ................................................. 47
3.9 相似值比對預測 ................................................... 48
第四章. 實驗結果與分析 ................................................... 50
4.1 心電圖資料選擇 ................................................... 50
4.2 隱藏式馬可夫模型參數設定 ......................................... 51
4.2.1 States 的個數設定 ............................................ 51
4.2.2 States 的啟始轉移機率值與States 的轉移方式設定 ................ 52
4.3 疾病預測檔案建立 ................................................. 56
4.4 高斯混合模型參數設定 ............................................. 58
4.5 預測結果與討論 ................................................... 59
第五章. 結論與後續研究建議 ............................................... 68
參考文獻 .................................................................. 71
參考文獻
[1]B. Garcia , N.E. Holtz, Introduction to 12-Lead ECG:The Art of Interpretation.
[2]“American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care - Part 8: Stabilization of the Patient With Acute Coronary Syndromes,” December. 2005.
[3]K. Minami, H. Nakajima, T. Toyoshima, “Real-time discrimination of ventricular tachyarrhythmia with Fourier-transform neural network,” Biomedical Engineering, IEEE Transactions on, vol. 46, 1999, P. 179-185.
[4]Cuiwei Li, Chongxun Zheng, Changfeng Tai, “Detection of ECG characteristic points using wavelet transforms,” Biomedical Engineering, IEEE Transactions on, vol. 42, 1995, P. 21-28.
[5]D. Coast, R. Stern, G. Cano, S. Briller, “An approach to cardiac arrhythmia analysis using hidden Markov models,” Biomedical Engineering, IEEE Transactions on, vol. 37, 1990, P. 826-836.
[6]L. Rabiner, B. Juang, “An introduction to hidden Markov models,” ASSP Magazine, IEEE, vol. 3, 1986, P. 4-16.
[7]R. Dugad , U.B. Desai, “A Tutorial On Hidden Markov Models,” SIGNAL PROCESSING AND ARTIFICIAL NEURAL NETWORKS LABORATORY DEPARTMENT OF ELECTRICAL ENGINEERING INDIAN INSTITUTE OF TECHNOLOGY — BOMBAY POWAI, BOMBAY 400 076, INDIA, 1996.
[8]L. Rabiner, “A tutorial on hidden Markov models and selected applications in speech recognition,” Proceedings of the IEEE, vol. 77, 1989, P. 257-286.
[9]Rodrigo V. Andreao, Sandra M.T. Muller, Jerome Boudy, Bernadette Dorizzi, Teodiano F. Bastos-Filho, Mario Sarcinelli-Filho, “Incremental HMM training applied to ECG signal anlysis”, Computers in Biology and Medicine , 2008 p659-667
[10]F. Sandberg, M. Stridh, L. Sornmo, “Frequency Tracking of Atrial Fibrillation Using Hidden Markov Models,” Biomedical Engineering, IEEE Transactions on, vol. 55, 2008, P. 502-511.
[11]C. Lima , M. Cardoso, “Cardiac Arrhythmia Detection by Parameters Sharing and MMIE Training of Hidden Markov Models,” Engineering in Medicine and Biology Society, 2007. EMBS 2007. 29th Annual International Conference of the IEEE, 2007, P. 3836-3839.
[12]R. Andreao, B. Dorizzi, J. Boudy, , J. Mota, “ST-segment analysis using hidden Markov Model beat segmentation: application to ischemia detection,” Computers in Cardiology, 2004, 2004, P. 381-384.
[13]S. Krimi, K. Ouni, , N. Ellouze, “An Approach Combining Wavelet Transform and Hidden Markov Models for ECG Segmentation,” Information and Communication Technologies: From Theory to Applications, 2008. ICTTA 2008. 3rd International Conference on, 2008, P. 1-6.
[14]R. Andreao, B. Dorizzi, J. Boudy, “ECG signal analysis through hidden Markov models,” Biomedical Engineering, IEEE Transactions on, vol. 53, 2006, P. 1541-1549.
[15]Julien Thomas, Cedric Rose, Francois Charpillet, “A Multi-HMM Approach to ECG Segmentation,” Tools with Artificial Intelligence, 2006. ICTAI ''06. 18th IEEE International Conference on, 2006, P. 609-616.
[16]S. Graja, J. Boucher, S. Member, “Hidden Markov Tree Model Applied ti ECG Delineation.”
[17]D. Reynolds , R. Rose, “Robust text-independent speaker identification using Gaussian mixture speaker models,” Speech and Audio Processing, IEEE Transactions on, vol. 3, 1995, P. 72-83.
[18]D.A. Reynolds, T.F. Quatieri, R.B. Dunn, “Speaker Verification Using Adapted Gaussian Mixture Models*1, *2,” Digital Signal Processing, vol. 10, January. 2000, P. 19-41.
[19]W. Kim, J.H.L. Hansen, “Feature compensation in the cepstral domain employing model combination,” Speech Commun. vol. 51, 2009, P. 83-96.
[20]H. Permuter, J. Francos, I. Jermyn, “Gaussian mixture models of texture and colour for image database retrieval,” Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP ''03). 2003 IEEE International Conference on, 2003, P. III-569-72 vol.3.
[21]K. Sung , T. Poggio, “Example-based learning for view-based human face detection,” Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 20, 1998, P. 39-51.
[22]R. Povinelli ,“Towards the prediction of transient ST changes,” Computers in Cardiology, 2005, 2005, P. 663-666.
[23]Yonghong Huang, K. Englehart, B. Hudgins, A. Chan, “A Gaussian mixture model based classification scheme for myoelectric control of powered upper limb prostheses,” Biomedical Engineering, IEEE Transactions on, vol. 52, 2005, P. 1801-1811.
[24]J. Cai, G. Bouselmi, Y. Laprie, J. Haton, “Efficient likelihood evaluation and dynamic Gaussian selection for HMM-based speech recognition,” Computer Speech & Language, vol. 23,April . 2009, P. 147-164.
[25]E. Osuna, R. Freund, F. Girosit, “Training support vector machines: an application to face detection ,” Computer Vision and Pattern Recognition, 1997. Proceedings., 1997 IEEE Computer Society Conference on, 1997, P. 130-136.
[26]T. Joachims, “Text categorization with Support Vector Machines: Learning with many relevant features,” Machine Learning: ECML-98, 1998, P. 137-142.
[27]Kwang In Kim, Keechul Jung, Se Hyun Park, Hang Joon Kim, “Support vector machines for texture classification,” Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 24, 2002, P. 1542-1550.
[28]K. Murphy, “Hidden Markov Model (HMM) Toolbox for Matlab, June. 2005.
[29] Nabney, NETLAB.
[30]F. Jager, G. Moody, A. Taddei, R. Mark, “Performance measures for algorithms to detect transient ischemic ST segment changes,” Computers in Cardiology 1991, Proceedings., 1991, P. 369-372.
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊