跳到主要內容

臺灣博碩士論文加值系統

(44.192.22.242) 您好!臺灣時間:2021/07/28 04:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:廖秀珊
研究生(外文):Hsiu-Shan Liao
論文名稱:運用語意變數探勘階層概念之模糊關聯規則
論文名稱(外文):Mining Fuzzy Association Rules From Hierarchy Concept with Linguistic Variable
指導教授:龐金宗龐金宗引用關係
指導教授(外文):Chin-Tzong Pang
學位類別:碩士
校院名稱:元智大學
系所名稱:資訊管理學系
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:54
中文關鍵詞:資料探勘階層概念語意變數頻率樣式成長方法
外文關鍵詞:Data MiningHierarchy ConceptLinguistic VariableFP-Growth
相關次數:
  • 被引用被引用:3
  • 點閱點閱:165
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
資料庫─現今企業儲存資料的重要技術,除了用於儲存資料外,可透過資料探勘技術,挖掘隱藏於資料庫中未知的資訊。當前資料探勘技術眾多,其中以關聯規則運用最為廣泛,關聯規則主要探討商品購買的關聯性,以提供資訊給決策者參考之用。然而,現今關聯規則研究,最小支持度與最小信心水準大都採用預先指定數值,但如何給定合適之數值卻是一大難題;此外,商品在實務上種類眾多,所產生之交易商品組合也十分複雜,因此要從中挖掘出關聯規則並不容易,此時,藉由提高交易項目之階層概念,以助於找出交易資料間存在的關聯規則,企業中各階層管理者所需的訊息層面不同,故以階層概念探勘之關聯規則,可提供不同層面之訊息。

本研究以FP-Growth為基礎,結合模糊理論與階層概念,提出了模糊多層資料探勘演算法(Fuzzy Multiple-level data Mining Algorithm,FMMA)。此演算法,運用語意變數解決最小支持度與最小信心水準找尋合適數值之難題;以階層分類為概念,子階層僅需考量父階層為頻繁項目集之節點,故可減少探勘所需的時間與空間。本研究提出之演算法,使用上更為人性化且對於探勘執行時間及所需儲存空間均有改善,而探勘出的關聯規則,以自然語言方式呈現,因而較貼近人類思維且簡單容易了解。
Database is the key technology for current enterprises to store their data. It is not only used for storing information but also mining the unknown information that hidden in the database. There are various kinds of data mining technologies, but the most common one is the association rule. The association rule is mainly used to discuss the association of the purchased products in order to provide reference information for the decision-maker. According to the current researches of the association rule, minimum support and minimum confidence generally use pre-determined value as their basic requirement. However, how to identify that the value is sufficient is very tough. Besides, in fact there are tons of goods on the market, the more goods the more complicated the goods sets will be. Thus, the association rule is very difficult to discover. To this end, we raise the hierarchy concept of the transaction items to assist us to find out the association rule. In addition, the administrator of each hierarchy needs different messages. Therefore, use the association rule founded by hierarchy concept, different messages can be sent to different hierarchy.

Based on the FP-Growth, this study associates the framework of fuzzy theory and hierarchy concept to propose an approach- FMMA, Fuzzy Multiple-level data Mining Algorithm. This algorithm uses linguistic variables to solve the problem of finding out the sufficient value by using minimum support and minimum confidence. Furthermore, according to the level taxonomy concept, the sub-level only needs to consider the nods of its parent level’s frequent itemset, thus the required mining time and space can be reduced to a certain extent. The algorithm raised in this study is more humanity and more effective in enhancing the required executive time and information storage space. The mined association rule is presented by natural language which is closer to the human thought and is easier to understand.
書名頁--------------------------------------------------i
論文口試委員審定書-------------------------------------ii
授權書------------------------------------------------iii
中文摘要-----------------------------------------------iv
英文摘要------------------------------------------------v
誌謝--------------------------------------------------vii
目錄-------------------------------------------------viii
表目錄--------------------------------------------------x
圖目錄------------------------------------------------xii
第一章 緒論---------------------------------------------1
第一節 研究背景與動機-------------------------------1
第二節 問題描述-------------------------------------1
第三節 研究目的-------------------------------------2
第四節 論文架構-------------------------------------3
第二章 文獻探討-----------------------------------------4
第一節 資料探勘-------------------------------------4
第二節 關聯規則-------------------------------------6
第三節 多階層關聯規則------------------------------23
第四節 模糊理論------------------------------------24
第三章 研究方法----------------------------------------27
第一節 研究方法流程圖------------------------------28
第二節 演算法符號介紹------------------------------29
第三節 演算法--------------------------------------30
第四章 研究結果----------------------------------------33
第一節 範例介紹------------------------------------33
第二節 分析與討論----------------------------------49
第五章 結論與未來研究方向------------------------------50
第一節 結論----------------------------------------50
第二節 未來研究方向--------------------------------51
參考文獻-----------------------------------------------52
[1] Cabena,P., Hadjinian, P., Stadler, R., Verhess, J. and Zanasi, A., “Discovering Data Mining From Concept to Implementation” , Prentice-Hall Inc., 1997.
[2] Cheung, D.W., Han, J., Ng, V.T., Fu, A.W. and Fu, Y., ”A Fast Distributed Algorithm for Mining Association Rules” , In Proc. of 1996 Int’l Conf. on PDIS’96,Miami Beach, Florida, USA, Dec 1996.
[3] Fayyad, U.M., “Data Mining and knowledge Discovery : Making Sense Out of data”, IEEE Expert, Volume 11, Issue 5, pp. 20-25, 1996.
[4] Han, J., Fu, Y., “Discovery of multiple-level association rules from large databases”, The international conference on very large databases, pp. 420–431, 1995.
[5] Han, Jiawei and Kamber, Micheline, “Data Mining : Concepts and Techniques” , John Wiley & Son, 2001.
[6] J. Han, J. Pei, and Y. Yin(2000), “Mining Frequent Patterns without Candidate Generation”, Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, pp. 1-12.
[7] Kleissner, C., “Data mining for the enterprise”, In Proceedings of the Thirty-First Hawaii International Conference on, Volume 7, pp. 295-304, 1998.
[8] L. C. Lee, T. P. Hong, and T. C. Wang, “Multi-level fuzzy mining with multiple minimum supports”, Expert Systems with Applications, Vol. 34 , pp. 459-468, 2008.
[9] L. Kaufman and P.J. Rousseeuw, “Finding Groups in Data: an Introducation to Cluster Analysis”, John Wiley&Sons, 1990.
[10] Michael, J.A. and Linoff, G., “Data Mining Technique : for Marketing, Sales and Customer Support”, Wiley Computer Publishing, New York, 1997.
[11] Ming-Syan Chen, Jong Soo Park and Philip S. Yu, ”Efficient Data Mining for Path Traversal Patterns”, IEEE Transactions on Knowledge and Data Engineering, Vol. 10, No. 2, 1998.
[12] R. Agrawal, T. Imielinski, and A. Swami, “Mining Association Rules between Sets of Items in Large Databases”, Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data, pp. 207-216, 1993.
[13] R. Srikant and R, Agrawal, “Mining sequential patterns: generalizations and performance inprovements”, International Conference on Extending Database Technology, pp. 3-17, 1996.
[14] S.M. Weiss and C.A. Kulikowski, ’’Computer Systems that learn: classification and prediction methods from statistics”, Neural Nets, Machine Learning , and Expert Systems. Morgan Kaufman Publishers, Inc, 1991.
[15] Thomas H. Cormen, Charles E. Leisersion, and Ronald L. Rivest,” Introduction to Algorithms”, MIT Press, 1989.
[16] T. P. Hong, K. Y. Lin, and S. L. Wang, “Fuzzy data mining for interesting generalized association rules”, Fuzzy Sets and Systems, Vol. 138 , pp. 255-269, 2003.
[17] Zadeh, L. A., “Fuzzy Sets”, Information and Control, Vol. 8, pp. 338-353, 1965.
[18] Zadeh, L. A., “The Concept of a Linguistic Variable and its Application to
Approximate Reasoning”, Information Science, Vol. 8, pp. 199-249, 1975.
[19] 丁一賢、陳牧言,資料探勘,初版,台中,滄海書局,民國九十五年。
[20] 丁詒恩,「仲介房屋品質特性與軟體系統架構之設計」,虎尾科技大學,碩士論文,民國九十六年。
[21] 王文俊,認識Fuzzy,三版,台北,全華科技圖書股份有限公司,民國九十五年。
[22] 吳淑禎,「在空間資料庫中利用快速漸進式探勘法挖掘改變顯著的空間規則」,朝陽科技大學,碩士論文,民國九十四年。
[23] 康聖祥,「模糊階層關聯規則及其支持度門檻值調整機制」,虎尾科技大學,碩士論文,民國九十七年。
[24] 陸津華,「挖拙高獲利性關聯規則之研究」,東海大學,碩士論文,民國九十二年。
[25] 曾憲雄等,資料探勘,初版,台北,旗標出版股份有限公司,民國九十四年。
[26] 梁嘉鴻,「具隱私防護之關聯規則探勘研究」,朝陽科技大學,碩士論文,民國九十四年。
[27] 楊婉祺等,「模糊階層關聯規則之應用─利用FP-tree相似結構」,ETIS2008第三屆數位教學暨資訊實務研討會,民國九十七年
[28] 鄭永雄,「關聯法則探勘演算法之研究探討」,義守大學,碩士論文,民國九十六年。
[29] 鄭印良,「以利潤為主要考量之多重最小支持量化關聯規則」,虎尾科技大學,碩士論文,民國九十六年。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊