一、中文部分
[1] 王本仁,黃心苑,周穎政,「全民健保子宮頸抹片檢查受檢情形影響因子分析-個體時間依序列時間之實證研究,1997~2000」,台灣衛誌,第24卷第1期,2005年。
[2] 世界衛生組織,http://www.who.int。
[3] 朱堂元,「類乳突病毒與子宮頸癌的預防篩檢」人,台北市醫師公會會刊,第44卷第5期,49-53頁,2000年。
[4] 行政院衛生署,衛生統計資訊網 http://www.doh.gov.tw/statistic/index.htm。
[5] 行政院衛生署國民健康局,台灣癌症登記系統http://crs.cph.ntu.edu.tw/main.php?Page=A5。
[6] 林政道,吳宜鴻,中西醫會診-子宮頸癌,書泉出版社,2001年。
[7] 周振陽,陳建仁,游山林,婦女健康新展望─子宮頸癌預防政策白皮書,財團法人厚生基金會,2007年。
[8] 夏萍等,實用婦科護理,華杏出版股份有限公司,2008年。
[9] 許軒之,梁雲,方富民,孫立民,陳惠君,王重榮,「第三期後期子宮頸癌
[10] 國家衛生研究院,TCOG子宮頸癌臨床指引,2008。
[11] 國家衛生研究院,http://www.nhi.gov.tw/webdata/AttachFiles。
[12] 郭文建,陳麗州,莊淑慧,張光耀,「資料挖掘技術簡介與應用」,電信研究雙月刊,第32卷第6期,719-729頁,2003年。[13] 張語恬,朱基銘,簡戊鑑,「比較三種資料探勘演算法預測子宮頸癌五年存活的外部通用行效能」,台灣家醫誌,第17卷第4期,2007年。
[14] 陳松吟,「全民健康保險子宮頸癌抹片篩檢使用型態六年之追蹤研究」,國立陽明大學,碩士論文,2003年。[15] 陳尚文,林芳仁,梁基安,陽是能,劉瑞燦,涂振邦,蕭安成,吳學鼎,「子宮頸癌放射線治療的結果及直腸後遺症的分析(新光醫院的五年經驗)」,放射治療與腫瘤學,第5卷第1期,11-18頁,1998年。
[16] 黃承龍,「支援向量機應用於醫學健檢之肝病分類」,國立高雄第一科技大學,碩士論文,2006年。
[17] 葉光揚,「如何正確使用生物統計—Survival Analysis」,長庚內科通訊,8-9頁,1998年。
[18] 游進益,許振益,陳榮達,「多發性原發惡性腫瘤-病例報告」,耳鼻喉科醫學會雜誌,第30卷第4期,389-393頁,1995年。
[19] 廖繼鋐,「我國中老年醫療使用及對全民健保醫療費用影響之探討」,國立中正大學,碩士論文,1997年。[20] 賴耿光,馬玉麟,許瑞昌,葉坤土,賴義雄,林隆堯,周明智,「子宮頸癌術後放射線治療病人組織病理學預後因子之多變數分析」,放射治療與腫瘤學,第9卷第1期,53-63頁,2002年。[21] 賴瓊慧,「子宮頸癌的預後因素及化學治療在子宮頸癌治療的角色」,中華癌醫會誌,第 16卷第2期,9-15頁,2000年。
二、英文部分
[1] Abidi, A., Xing, G., Nasseri, K., Cress, R., Mourton, S., and Leiserowitz, G., “Age and Race Disparity in Incidence, Treatment and Survival of Cervical Cancer in California,” Gynecologic Oncology, Vol. 111, Issue. 2, pp. 384, 2008.
[2] Abraham, A., Chen, Y., and Yang, B., “Feature Selection and Classification Using Flexible Neural Tree,” Neurocomputing, Vol. 70, Issue. 1, pp. 305–313, 2006.
[3] Akay, M. F., “Support Vector Machines Combined with Feature Selection for Breast Cancer Diagnosis,” Expert Systems With Applications, Vol. 36, pp. 3240–3247, 2008.
[4] American Cancer Society, Cancer Source Book for Nurse, 8st ed, Jones and Bartlett Publishers Inc., 2004.
[5] Avci, E., and Avci D., “Using Combination of Support Vector Machines for Automatic Analog Modulation Recognition,” Expert Systems With Applications, Vol. 36, pp. 3956-3964, 2009.
[6] Agrawal, R., and Srikant, R., “Fast Algorithms for Mining Association Rules in Large Databases. In Proceedings of the Twentieth International Conference Very Large Databases,” VLDB’94, pp. 478–499, 1994.
[7] Ballegooijen, M. J., Marle, M. E., and Patnick, J., “Overview of Important Cervical Cancer Screening Process Values in European Union(EU) Countries and Tentative Predictions of the Corresponding Effectiveness and Cost-Effectiveness,” European Journal of Cancer, Vol. 36, pp. 2177-2188, 2000.
[8] Bellotti, T., and Crook, J., “Support Vector Machines for Credit Scoring and Discovery of Significant Features,” Expert Systems With Applications, Vol. 36, Issue. 2, Part 2, pp. 3302-3308, 2009.
[9] Bray, F., Guerra, Y. M., and Pardin, D. M., “The Comprehensive Cancer Monitoring Programme in Europe,” European Journal of Public Health, Vol. 13, pp. 61-66, 2003.
[10] Breiman, L., Friedman, J., Olshen, R., and Stone, C., “Classification and Regression Trees. (C&RT) Monterey,” CA: Wadsworth International Group, 1984.
[11] Chang, C. J., and Shyue, S. W., “A study on the Application of Data Mining to Disadvantaged Social Classes in Taiwan’s Population Census,” Expert Systems with Applications, Vol. 36, pp. 510-518, 2009.
[12] Chapman, G. W. J., “Survival of Advanced Age Females with Cervical Carcinoma,” Gynecol Oncol, Vol. 46, Issue. 3, pp. 287-291, 1992.
[13] Clegg, L. X., Li, F. P., Hankey, B. F., Chu, K., and Edwarda, B. K., “Cancer Survival among US Whites and Minorities:A SEER(Surveillance,Epidemiology,and End Results ) Program Population-Base Srudy,” Archives of Internal Medicine, Vol. 162, pp. 1985-1993, 2002.
[14] Chen, R. J., Chang, D. Y., Yen, M. L., Lee E. F., Huang, S. C., Chow, S. N., and Hsieh, C. Y., “Prognostic Factors of Primary Adenocarcinoma of the Uterine Cervix,” Gynecolgic Oncology , Vol. 69, pp. 157-164, 1998.
[15] Delen, D., Walker, G., and Kadam, A., “Predicting Breast Cancer Survivability: a Comparison of Three Data Mining Methods,” Artificial Intelligence in Medicine, Vol. 34, Issue. 2, pp. 113-127, 2005.
[16] Dhanalakshmi, P., Palanivel, S., and Ramalingam, V., “Classification of Audio Signals Using SVM and RBFNN,” Expert Systems with Applications. (Forthcoming)
[17] Fagundes, H., Perez, C. A., Grigsby, P. W., and Lockett, M. A., “Distant Metastasis after Irradiation Alone in Carcinoma of the Uterine Cervix,” Int J Radat Oncol Biol Phy, Vol. 24, Issue. 2, pp. 197-204, 1992..
[18] Gluckman, J. L., and Crissman, J. D., “Survival Rates in 548 Patients with Multiple Neoplasms of the Upper Aerodigestive Tract,” Laryngoscope, Vol. 93, pp. 71-74, 1983.
[19] Gao, F., Manatunga, A. K., and Chen, S., “Identification of Prognostic Factors with Multivariate Survival Data,” Computational Statistics and Data Analysis, Vol. 45, pp. 813-824, 2004.
[20] Gunn, S. R., “Support Vector Machines for Classification and Regression,” Technical Report University of Southampto, 1998.
[21] Herrero, R., Castle, P. E., and Schiffman, M.,”Epidemiologic Profile of Type-Specific Human Papillomavirus Inflection and Cervical Neoplasia in Guanacaste, Costa Rica,” J Inf. Dis, Vol. 191, pp. 1796-807, 2005.
[22] Hakama, M., Miller, A. B., and Day, N. E., “Screening for Cancer of the Uterine Cervix.International Agency for Research on Cancer,” Lyon IARC Sci.Publ,.Vol. 100, 1986.
[23] Henriksen, E., “The Lymphatic Spread of Carcinoma of the Cervix and the Body of the Uterus: A Study of 420 necropsies,” Am J Obstet Gynecol, Vol. 58, pp. 924-942, 1949.
[24] Howell, E. A., Chen, Y. T., and Concato, J., “Differences in Cervical Cancer Mortality among Black and White Women,” Obstet Gynecol, Vol. 94, pp. 509-515, 1999.
[25] Imaginis, Cervical Cancer-Introduction, Women''s Health - Cervical Cancer, http://www.imaginis.com/cervical-cancer, 2008.
[26] Keys, H. M., Bundy, B. N., and Stechman, F. B., “Cisplatin Radiationand Adjuvant Hysterectomy Compared with Eadiation and Adjuvant Hysterectomy for Bulky Stage Ib Cervical Carcinoma,” N Engly J Med, Vol. 340, pp. 1154-1161, 1999.
[27] Kim, H. S., Park, N. H., and Kang, S. B., “Rare Metastases of Recurrent Cervical Cancer to the Pericardium and Abdominal Muscle,” Arch Gynecol Obstet, Vol. 278, pp. 479-482, 2008.
[28] Li, Q., Meng, Q., Cai, J., Yoshino, H., “A Mochida Predicting Hourly Cooling Load in the Building: A Comparison of Support Vector Machine and Different,” Energy Conversion and Management Vol. 50, pp. 90-96, 2009.
[29] Lisboa, P. J. G., “ A Review of Evidence of Health Benefit from Artificial Neural Networks in Medical Intervention,” Neural Networks, Vol. 15, Issue. 1, pp. 11-19, 2002.
[30] Lai, C. H., Hsueh, S., Hung, M. Y., Chang, M. F., and Soong, Y. K., “The Uses and Limitations of DNA Flow Cytometry in Stage Ib or II Cervical Carcinoma,” Cancer, Vol. 72, pp. 3655-3662, 1993.
[31] Mathew, A., Pandey, M., and Murthy, N. S., “Survival Analysis: Caveats and Pitfall,” European Journal Surgical Oncology, Vol. 25, pp. 321-329, 1999.
[32] Merrill, R. M., Merrill, A. V., and Mayer, L. S., “Factors Associated with No Surgery Or radiation Therapy for Invasive Cervical Cancer in Black and White Women,” Ethn Dis, Vol. 10, pp. 248-256, 2000.
[33] Miller, A. B., Chamberlain, J., and Day, N. E., “Report on a Workshop of UICC Project on Evaluation of Screening for Cervical,” Int J Cancer, Vol. 46, pp. 761-769, 1990.
[34] Morris, M., Eifel, P. J., Lu, J., Grigsby, P. W., Levenback, C., Stevens, R. E., Rotman, M., Gershenson, D. M., and Mutch, D. G., “Pelvic radiation with concurrent chemotherapy compared with pelvic and para-aortic radiation for hight-risk cervical cancer,” N Engl J Med,Vol. 340, pp.1137-1143, 1999.
[35] Ohno, T., Kato, S., Sato, S., Fukuhisa, K., Nakano, T., Tsujii, H., and Arai, T., “Long-Term Survival and Risk of Second Cancers After Radiotherapy for Cervical Cancer,” International Journal of Radiation Oncology Biology Physics, Vol. 69 , Issue. 3, pp. 740-745, 2007.
[36] Parazzini, F., Hildesheim, A., Ferraroni, M. L., and Vecchia, C., “Brinton LA. Relative and Attributable risk for Cervical Cancer: a Comparative Study in the United States and Italy,” Int J Epidemiol, Vol. 19, pp. 539-545, 1990.
[37] Peng, Y., Yao, B., and Jiang, J., “Knowledge-Discovery Incorporated Evolutionary Search for Microcalcification Detection in Breast Cancer Diagnosis,” Artificial Intelligence in Medicine, Vol. 37, Issue. 1, pp. 43–53, 2006.
[38] Piatetsky-Shapiro, G., and Frawley, W.J., Knowledge Discovery in Databases, AAAI/MIT Press, pp. 229-238. 1991.
[39] Platt, J. C., Cristianini, N., and Shawe-Taylor, J., “Large Margin DAGs for Multiclass Classification,” Advances in Neural Information Processing Systems , Vol. 12, pp. 547-553, 2000.
[40] Quinlan, J. R., “Induction of Decision Tree,” Machine Learning, Vol. 1, pp. 81-106, 1986.
[41] Richard, J. R., and Michael, W. G., Data Mining a Tutorial-based Primer, 1st ed.,Addison Wesley,New York, pp. 4-27, 2002.
[42] Sainsbury, R., Rider, L., Smith, A., and MacAdam, A., “Does it Matter where You Live? Treatment Variation for Breast Cancer in Yorkshire,” Br J Cancer, Vol. 43, pp. 1275-1278, 1995.
[43] Silva, A., Cortez, P., Santos, M. F., Gomes, L., and Neves, J., “Mortality Assessment Inintensive Care Units Via Adverse Events Using Artificial Neural Networks,” Artificial Intelligence in Medicine, Vol. 36, pp. 223–234, 2006.
[44] Spensley, S., Hunter, R. D., Livsey, J. E., Swindell, R., and Davidson, S. E., “Clinical Outcome for Chemoradiotherapy in Carcinoma of the Cervix,” Clin Oncol. (Forthcoming)
[45] Souhami, L., Melo J. A. C., and Gonzalo Pareja, V., “The Treatment of Stage Ⅲ Carcinoma of the Uterine Cervix with Telecobalt Irradiation,” Gynecol Oncol, Vol. 28, pp. 262-267, 1987.
[46] Talb?ck, M., Stenbeck, M.,and Ros?n, M., “ Up-to-Date Long-Term Survival of Cancer Patients: An Evaluation of Period Analysis on Swedish Cancer Registry Data,” European Journal of Cancer, Vol. 40, Issue. 9. pp. 1361-1372, 2004.
[47] Vapnik, V., “The National of Statistical Learning Theory,” New York: Springer-Verlag, 1995.
[48] Wornjnowski, Z., Romejko, M., and Zielinski, J., “ Epidemiological Evaluation of the Efficiency of Treatment of Preinvasive Cervical Cancer in Warsaw, 1969-1988,” Eur J of Gynaecol Oncol, Vol. 14: Suppl, pp. 54-60, 1993.
[49] Yan, L., Verbel, D., and Saidi, O., “Predicting Prostate Cancer Recurrence Via Maximizing the Concordance Index,” Proceedings 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 479-485, 2004.