跳到主要內容

臺灣博碩士論文加值系統

(44.192.22.242) 您好!臺灣時間:2021/08/03 18:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:羅佳玲
研究生(外文):Chia-Ling Lo
論文名稱:同步式關鍵字萃取方法應用於美妝評論
論文名稱(外文):Extracting Product Features and Opinion Words Simultaneously from Cosmetic Customer Reviews
指導教授:邱昭彰邱昭彰引用關係
學位類別:碩士
校院名稱:元智大學
系所名稱:資訊管理學系
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:45
中文關鍵詞:意見探勘樣式規則關鍵字萃取
外文關鍵詞:Opinion MiningPattern RuleKeyword Extraction
相關次數:
  • 被引用被引用:3
  • 點閱點閱:630
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
網路上有著豐富的產品或服務意見資訊,然而要消費者或廠商處理這些評論資訊會浪費許多時間與人力資源。本研究的目的是從網路消費者評論中擷取重要的資訊。本研究提出一個有效率的同步式關鍵字萃取方法應用於中文的美妝評論。同步式關鍵字萃取過程包含兩個階段:階段一,利用些許人工挑選的seed words產生其對應的樣式規則;階段二,使用樣式規則、反覆式關鍵字萃取流程與否定詞辨別方法自動地萃取評論的opinion unit。根據最後的實驗結果顯示同步式關鍵字萃取方法在擷取opinion unit有不錯的效果。
Internet has become the source of almost everything, ranging from voluminous information to products and services. Sorting through the countless comments may be a waste of time on the part of the customers and on manufacturer’s human resources. We aim to mine the important information of product review from Internet customers. We propose an effective way to extract product features and opinion words simultaneously from cosmetic customer reviews in Chinese. The process consists of two parts. First, several seed words are used to generate pattern rules; second, pattern rules, iterative process, and negation words identification methods are employed to automatically extract opinion units that commented by users. Our experimental results indicate that our proposed techniques are highly effective.
目錄
書名頁 i
論文口試委員審定書 ii
授權書 iii
中文摘要 iv
英文摘要 v
致謝 vi
目錄 vii
表目錄 viii
圖目錄 ix
1 緒論 1
2 文獻探討 3
2.1 關鍵字萃取 3
2.2 語意傾向分類 7
2.3 評價彙整與視覺化 8
2.4 應用領域 9
3 研究方法 10
3.1 名詞定義 10
3.2 研究流程 12
3.3 產品評論前處理 13
3.4 關鍵字萃取 14
4 實驗評估及分析 19
4.1 資料蒐集 19
4.2 標準答案標記 20
4.3 實驗設計 20
4.4 實驗結果 21
5 討論 34
5.1 資料型態分析 34
5.2 Product Feature與Opinion Word的詞性分析 34
5.3 Negation Word分析 36
6 結論與未來方向 38
參考文獻 40
附錄一 44
附錄二 45

表目錄
表1:不同領域的意見探勘相關研究 9
表2:使用者評論型態 12
表3:相似詞彙與相似POS結構的評論 15
表4:Product Feature and Opinion Word Extraction Rules 15
表5:FashionGuide中的評論資料 19
表6:標準答案標記範例 20
表7:關鍵字萃取樣式規則 20
表8:關鍵字萃取的樣式規則組合 21
表9:每個關鍵字萃取步驟的Recall與Precision (Pattern Rule: Ri, i=1) 23
表10:每個關鍵字萃取步驟的F-Score (Pattern Rule: Ri, i=1) 23
表11:每個關鍵字萃取步驟的Recall與Precision (Pattern Rule: Ri, i=1 to 2) 24
表12:每個關鍵字萃取步驟的F-Score (Pattern Rule: Ri, i=1 to 2) 24
表13:每個關鍵字萃取步驟的Recall與Precision (Pattern Rule: Ri, i=1 to 3) 25
表14:每個關鍵字萃取步驟的F-Score (Pattern Rule: Ri, i=1 to 3) 25
表15:每個關鍵字萃取步驟的Recall與Precision (Pattern Rule: Ri, i=1 to 5) 26
表16:每個關鍵字萃取步驟的F-Score (Pattern Rule: Ri, i=1 to 5) 26
表17:每個關鍵字萃取步驟的Recall與Precision (Pattern Rule: Ri, i=2 to 5) 27
表18:每個關鍵字萃取步驟的F-Score (Pattern Rule: Ri, i=2 to 5) 27
表19:每個關鍵字萃取步驟的Recall與Precision (Pattern Rule: Ri, i=3 to 5) 28
表20:每個關鍵字萃取步驟的F-Score (Pattern Rule: Ri, i=3 to 5) 28
表21:關鍵字萃取在不同樣式規則的Recall與Precision (實驗一至四) 30
表22:關鍵字萃取在不同樣式規則的F-Score (實驗一至四) 30
表23:每個關鍵字萃取步驟的實驗結果(Baseline) 33
表24:美妝產品的資料型態分析 34
表25:美妝產品中Product Feature的詞性分析 35
表26:美妝產品中Opinion Word的詞性分析 36
表27:美妝產品中樣式規則分析 36
表28:美妝產品中Negation Word比例 37
表29:中文常見的Negation Word 37

圖目錄
圖1:研究架構圖 12
圖2:輸入資料與輸出結果的例子說明 13
圖3:產品評論斷句斷詞處理前後例子說明流程 14
圖4:Pattern Rule Generation Process 17
圖5:關鍵字萃取在不同樣式規則的Recall 31
圖6:關鍵字萃取在不同樣式規則的Precision 32
圖7:關鍵字萃取在不同樣式規則的F-Score 32
[1]Bruce, R. and Wiebe. J., 2000, "Recognizing Subjectivity: A Case Study in Manual Tagging," Natural Language Engineering, pp. 187-205.
[2]Cen, S., Mao, Y., Li, R. and Wang, X., 2008, "Credit Distribution: A Graph-Based Approach to Extract Product Description Words," International Symposium on Knowledge Acquisition and Modeling, IEEE, pp.398-402.
[3]Dave, K., Lawrence, S., and Pennock, D., 2003, "Mining the Peanut Gallery: Opinion Extraction and Semantic Classification of Product Reviews," Proceedings of the 12th International Conference on World Wide Web, ACM, pp.519-528.
[4]Duan, H., Bao, S., and Yu, Y., 2007, "CCRM: An Effective Algorithm for Mining Commodity Information from Threaded Chinese Customer Reviews," Proceedings of the 11th Pacific-Asia Conference on Knowledge Discovery and Data Mining, pp. 473-480.
[5]Gamon, M., Aue, A., Corston-Oliver, S., and Ringger, E., 2005, "Pulse: Mining Customer Opinions from Free Text," Proceedings of the 6th International Symposiumon Intelligent Data Analysis, pp.121–132.
[6]Hu, M. and Liu, B., 2004a, "Mining Opinion Features in Customer Reviews," Proceedings of the 19th National Conference on Artificial Intelligence, pp.755-760.
[7]Hu, M. and Liu, B., 2004b, "Mining and Summarizing Customer Reviews," Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.169-177.
[8]Ku, L-W., Liang, Y-T., and Chen H-H., 2006, "Opinion Extraction, Summarization and Tracking in News and Blog Corpora," Proceedings of AAAI-2006 Spring Symposium on Computational Approaches to Analyzing Weblogs, pp.100-107.
[9]Liu, B., Hu, M., and Cheng, J., 2005, "Opinion Observer: Analyzing and Comparing Opinions on the Web," Proceedings of the 14th International Conference on World Wide Web, ACM, pp. 342-351.
[10]Mei, J., Zhu Y., Gao, Y. and Yin, H. tong2yi4ci2ci2lin2. Shanghai Dictionary Press, 1982.
[11]Miao, Q., Li, Q., and Dai, R., 2009, "AMAZING: A Sentiment Mining and Retrieval System," Expert Systems with Applications: An International Journal, pp.7192-7198.
[12]Morinaga, S., Yamanishi, K., Tateishi, K., and Fukushima, T., 2002, "Mining Product Reputations on the Web," Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 341-349.
[13]Pang, B., Lee, L., and Vaithyanathan, S., 2002, "Thumbs up? Sentiment Classification using Machine Learning Techniques," Proceedings of the ACL-02 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp.130-137.
[14]Qiu, G., Liu, K., Bu, J., Chen, C., and Kang, Z., 2007, "Extracting Opinion Topics for Chinese Opinions using Dependence Grammar," Proceedings of the 1st International Workshop on Data Mining and Audience Intelligence for Advertising(ADKDD), pp.40-44.
[15]Scaffidi, C., Bierhoff, K., Chang, E., Felker, M., Ng, H., and Jin, C., 2007, "Red Opal: Product-Feature Scoring from Reviews," Proceedings of the 8th Annual Conference on Electronic Commerce, pp.182-191.
[16]Thet, T. T., Na, J-C., and Khoo, C., 2008, "Sentiment Classification of Movie Reviews Using Multiple Perspectives," Proceedings of International Conference on Asian Digital Libraries (ICADL), pp.184-193.
[17]Turney, P.D, 2002, "Thumbs Up or Thumbs Down? Semantic Orientation Applied to Unsupervised Classification of Reviews," Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics (ACL), pp. 417-424.
[18]Wang, G. and Araki, K., 2008a, "A Graphic Reputation Analysis System for Mining Japanese Weblog Based on both Unstructured and Structured Information," Proceedings of the 22nd International Conference on Advanced Information Networking and Applications, IEEE Computer Society, pp.1240-1245.
[19]Wang, G. and Araki, K., 2008b, "An Unsupervised Opinion Mining Approach for Japanese Weblog Reputation Information Using an Improved SO-PMI Algorithm," IEICE - Transactions on Information and Systems, pp. 1032-1041.
[20]Wei, W., Liu, H., He, J., Yang, H., and Du, X., 2008, "Extracting Feature and Opinion Words Effectively from Chinese Product Reviews," Proceedings of the 5th International Conference on Fuzzy Systems and Knowledge Discovery, pp.170-174.
[21]Zhang, Z., Li, Y., Ye, Q., and Law, R., 2008, "Sentiment Classification for Chinese Product Reviews Using an Unsupervised Internet-based Method," Proceedings of the 15th Annual Conference on International Conference on Management Science and Engineering, pp. 3-9.
[22]Zheng, Y., Ye, L., Wu, G-F., and Li, X., 2008, "Extracting Product Features from Chinese Customer Reviews," Proceedings of 3rd International Conference on Intelligent System and Knowledge Engineering, vol.4, pp.170-174.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top