[1]陳家倫,2001 『台灣宗教行動圖像的初步建構』,國立台灣大學社會學研究所博士論文。
[2]平震宇,2007 『一個適用於行動裝置的網頁搜尋結果分群系統之研究』,元智大學資訊管理研究所碩士論文。[3]陳智威,2008 『一個中英文搜尋結果即時分群系統之研究』,元智大學資訊管理研究所碩士論文。[4]Abbasi, A., Chen, H. and Salem, A. 2008. Sentiment analysis in multiple languages: Feature selection for opinion classification in Web forums. ACM Trans. Inf. Syst. (26:3), pp. 1-34.
[5]Agrawal, R. and Srikant, R. 1994. Fast Algorithms for Mining Association Rules. Proceedings of the 20th International Conference on VLDB.
[6]Benamara, F., Cesarano, C., Picariello, A., Reforgiato, D. and Subrahmanian, V.S. 2007. Sentiment Analysis: Adjectives and Adverbs are better than Adjectives Alone. Proceedings of ICWSM 07 International Conference on Weblogs and Social Media, pp. 203-206.
[7]Benzecri, J.P. 1992. Correspondence Analysis Handbook. Mercel Dekker.
[8]Dave, K., Lawrence, S., and Pennock, D. 2003. Mining the Peanut Gallery: Opinion Extraction and Semantic Classification of Product Reviews. Proceedings of the twelfth international conference on World Wide Web, pp. 519-528.
[9]Ding, X., Liu, B. and Yu, P. S. 2008. A holistic lexicon-based approach to opinion mining. Proceedings of the international conference on Web search and web data mining. Palo Alto, California, USA, ACM., pp. 231-240.
[10]Esuli, A. and Sebastiani, F. 2005. Determining the semantic orientation of terms through gloss classification. Proceedings of the 14th ACM international Conference on information and Knowledge Management. CIKM ''05. ACM, New York, NY, pp. 617-624.
[11]Esuli, A. and Sebastiani, F. 2006. Determining term subjectivity and term orientation for opinion mining. Proceedings of the Eleventh Conference on European Chapter of the Association for Computational Linguistics. European Chapter Meeting of the ACL. Association for Computational Linguistics. pp. 193-200.
[12]Fuketa, M.,Kadoya, Y.,Atlam, E.,Kunikata, T.,Morita, K.,Kashiji, S. and Aoe, J.-I. 2005. A method of extracting and evaluating good and bad reputations for natural language expressions. International Journal of Information Technology and Decision Making. (4:2), pp. 177-196.
[13]Greenacre, M.J. 1993. Correspondence analysis in practice. Lon-don: Academic Press.
[14]Hu, M. and Liu B. 2004. Mining and summarizing customer reviews. Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining. Seattle, WA, USA, ACM., pp. 168-177.
[15]Hu, M., and Liu, B. 2004. Mining Opinion Features in Customer Reviews. In Proceedings of Nineteenth National Conference on Artificial Intelligence. The AAAI Press, Menlo Park, CA, pp. 755-760.
[16]Kobayashi, N., Inui, K. and Matsumoto, Y. 2007. Opinion Mining from Web Documents: Extraction and Structurization. Information and Media Technologies (2:1), pp. 326-337.
[17]Lee, D., Jeong, O. and Lee, S. 2008. Opinion mining of customer feedback data on the web. Proceedings of the 2nd international conference on Ubiquitous information management and communication. Suwon, Korea, ACM, pp. 230-235.
[18]Li, M. and Zhang, L. 2008. Multinomial mixture model with feature selection for text clustering. Knowledge-Based Systems (21:7), pp. 704-708.
[19]Liu, B. 2007. Web Data Mining book.
[20]Liu, B., Hu, M. and Cheng, J. 2005. Opinion observer: analyzing and comparing opinions on the Web. Proceedings of the 14th international conference on World Wide Web. Chiba, Japan, ACM., pp. 342-351.
[21]Ma, W.Y. and Chen, K.J. 2003. Introduction to CKIP Chinese Word Segmentation System for the First International Chinese Word Segmentation Bakeoff. Proceedings of ACL, Second SIGHAN Workshop on Chinese Language Processing, pp: 168-171.
[22]Morinaga, S., Yamanishi, K., Tateishi, K. and Fukushima, T. 2002. Mining product reputations on the Web. Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 341-349.
[23]Popescu, A. and Etzioni, O. 2005. Extracting product features and opinions from reviews. Proceedings of the Conference on Human Language Technology and Empirical Methods in Natural Language Processing. Human Language Technology Conference. Association for Computational Linguistics, Morristown, NJ, pp.339-346.
[24]Scaffidi, C., Bierhoff, K., Chang, E., Felker, M., Ng, H. and Jin, C. 2007. Red Opal: Product-Feature Scoring from Reviews. Proceedings of the 8th ACM conference on Electronic commerce, pp. 182-191.
[25]Turney, P. D. 2001. Thumbs up or thumbs down?: semantic orientation applied to unsupervised classification of reviews. Proceedings of the 40th Annual Meeting on Association for Computational Linguistics. Annual Meeting of the ACL. Association for Computational Linguistics. Morristown, NJ, pp. 417-424.
[26]Yang, C. C. and Wong, Y. C. 2008. Mining consumer opinions from the web. Proceedings of the International Conference on Web Information Systems and Technologies. Funchal, Madeira, Portugal.
[27]Zaiane, O. R., and Antonie, M. L. 2002. Text Document Categorization by Term Association. Proceeding of the IEEE International Conference on Data Mining, pp. 19.
[28]Zheng, Z. and Srihari, R. 2003. Optimally combining positive and negative features for text categorization. Proceedings of the ICML''03 Workshop on Learning from Imbalanced Date Sets, available at http://www.site.uottawa.ca/~nat/Workshop2003/zheng.pdf.