跳到主要內容

臺灣博碩士論文加值系統

(3.236.124.56) 您好!臺灣時間:2021/07/28 08:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:莊凱傑
研究生(外文):Kai-Jie Chuang
論文名稱:具有主動式電感電流感測器及可適性控制模式切換機制之自我震盪直流對直流轉換器
論文名稱(外文):An Adaptive Mode-Hopping, Self-Oscillating DC-DC Converter with Full Inductor-Current Sensing Technique
指導教授:吳紹懋
指導教授(外文):Sau-Mou Wu
學位類別:碩士
校院名稱:元智大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:102
中文關鍵詞:電流感測器模式切換機制
外文關鍵詞:current sensormode hopping mechanism
相關次數:
  • 被引用被引用:0
  • 點閱點閱:224
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文提出一個具有可適性模式切換機制及具有自我震盪功能之直流對直流轉換器。此直流對直流轉換器可以快速啟動達到穩定,並在負載突然改變時,具有較快的暫態響應。迴路控制電路中包含多路檢測器及主動式電感電流感測器。利用此電流感測器的技術來限制最大及最小電感電流並且感測負載電流大小。
在此提出的直流對直流轉換器中,總共有三種控制模式被建構以求最佳的轉換效率。藉由可適性模式切換機制,連續導通模式及不連續導通模式可自動地切換於高負載和輕負載的情況。而當轉換器處在極輕負載時,可選擇待命模式來降低切換損提升轉換效率。本篇論文亦提出各個操作模式下之轉換效率分析與討論。根據模擬的結果,此直流對直流轉換器的效率高達93.5%,且最大輸出漣波電壓在22毫伏以下,而輸出電流範圍在50mA到350mA之間。在輸入電壓範圍在2.4V到4.2V之間,直流對直流轉換器之操作頻率為0.3到1.7百萬兆赫。此直流對直流轉換器以TSMC 0.35-um 2P4M CMOS製程實現,晶片大小為1.97mm2。
An adaptive mode-hopping and self-oscillating DC-DC converter is presented in this thesis. This converter had fast transient response and system stable response. A multi-detector and a full inductor-current sensing technique area are applied on the loop controller of this DC-DC converter. The inductor current level is detected by active full inductor current sensor, so as to limit the maximum and minimum inductor current.
Three control modes are constructed for reaching the best efficiency distribution to load condition. The proposed adaptive mode-hopping mechanism activates the converter to switch between CCM and DCM modes when necessarily during normal operation. The idle-mode is utilized at every light load to reduce the switching losses and enhance the conversion efficiency. It is deduced from simulation results that the efficiency of the DC-DC converter can be up to 93.5% on the conditions that the maximum peak-to peak output voltage ripple is less than 22mV and the output current ranges are between 50mA and 350mA. The DC-DC converter operates at a frequency ranging from 0.3 to 1.7MHz and a supply voltage ranging from 2.4 to 4.2V. The DC-DC converter was implemented in TSMC 0.35-μm 2P4M CMOS process with die size of 1.97 mm2.
Chinese Abstract i
English Abstract ii
Acknowledgement iii
List of Contents iv
List of Tables vii
List of Figures viii
Chapter 1 Introduction 1
1.1 Background 1
1.1.1 Linear Regulator 2
1.1.2 Switching Regulator 3
1-2 Motivation 3
1.3 Organization 5
Chapter 2 Fundamentals of Switching Buck Regulator 6
2.1 The Basic Principle of DC-DC Buck Converter 6
2.1.1 Conductions Conduction Mode 8
2.1.2 Boundary of CCM and DCM 10
2.1.3 Discontinuous Conduction Mode 10
2.2 Specifications of Switching Regulator 11
2.2.1 Load regulation 12
2.2.2 Line Regulation 12
2.2.3 Output Voltage Ripple 12
2.2.4 Temperature regulation 12
2.2.5 Transient response 13
2.2.6 Efficiency 16
2-3 Component Selection Guidelines 19
Chapter 3 The Proposed System Mechanisms 22
3.1 Architecture of the Proposed DC-DC Buck Converter 22
3.2Operation Mode of the Proposed DC-DC Buck Converter 24
3-2-1 Continuous Conduction Mode (CCM) 26
3.2.2 Discontinuous Conduction Mode (DCM) 27
3.2.3 Idle Mode 29
3.2.4 Start-up state 30
3-3 Digital Controller 33
3.3.1 Self-oscillation 33
3.3.2 Adaptive Mode Switching Technique 34
3.3.3 Digital control circuit 36
Chapter 4 Circuit Design and Analysis 40
4.1 Active Current Sensor module for buck converter 40
4.1.1 Active High-side Switch Current Sensor 41
4.1.2 The Stability Analysis of High-side Switch Current Sensor 44
4.1.3 Active Low-side Switch Current Sensor 48
4.1.4 Sample and Hold Circuit 50
4.1.5 Current Comparator 53
4.2 Reference Current Generator 54
4.3 Bandgap Circuit 58
4.4 Multi-detector 61
4.5 Driver Circuit 64
4.6 Output Filter Design 65
Chapter 5 Efficiency Analysis 67
5.1 Power Dissipation Analysis 67
5.1.1 MOSFET Related Power 67
5.1.2. Filter Inductor Related Power 68
5.1.3. Filter Capacitor Related Power 68
5.1.4. Total Power Consumption of Buck Converter 69
5.2 Efficiency Analysis for the Proposed Buck Converter 70
5.2.1 Efficiency Analysis for CCM 71
5.2.2 Efficiency Analysis for DCM 73
5-2.3 Efficiency Analysis for Idle Mode 76
5.3 Boundary Load Condition 78
5.3.1 Boundary of CCM and DCM 78
5.3.2 Boundary of DCM and Idle mode 79
Chapter 6 System Simulation and Measurement 82
6.1 Simulation Results 82
6.2 Measurement Results 89
Chapter 7 Conclusions and Future Work 100
7.1 Conclusions 100
7.2 Future Work 101
Bibliography 102
[1]Chris Turner, “Choosing a battery,” Nexergy, Http://www2.electronicproducts.com/Choosing_a_battery-article-suapnexe-aug2007-html.aspx
[2]Jeff Falin, “Choosing the right dc/dc converter IC topology,” Texas Instruments, Http://www2.electronicproducts.com/Choosing_the_right_dc_dc_converter_IC_topology-article-augti1-aug2002.aspx
[3]R. W. Erickson, Fundamentals of power electronics, New York: Chapman and Hall, 1997.
[4]C. Y. Wu and T. Y. Yu, A high-efficiency synchronous CMOS switching regulator with PWM/PFM mode operation, Master Thesis, NCTU, July 2003.
[5]J. Stratakos, High-Efficiency Low-Voltage DC-DC Conversion for Portable Applications, Ph.D. Dissertation, University of California, Berkeley, 1998.
[6]Hong-Wei Huang; Chun-Yu Hsieh; Ke-Horng Chen, and Sy-Yen Kuo, "Load Dependent Dead-Times Controller Based on Minimized Duty Cycle Technique for DC-DC Buck Converters," Power Electronics Specialists Conference, vol., no., pp.2037-2041, 17-21 June 2007.
[7]LTC3406 Data Sheet, Linear Technology.
[8]RT8082 Data Sheet, RICHTEK.
[9]Sau-Mou Wu, Chung-Lin Wu, and Chia-Hsien Chang, “A New CMOS DC-DC Converter with Adaptive Mode-Switching Mechanism,” The 4th International SOC Conference (ISOCC 2007), Korea, Oct. 2007.
[10]Sau-Mou Wu, Chung-Lin Wu and Chia-Hsien Chang, “A New Adaptive Mode-Switching Mechanism with Current-mode CMOS DC-DC Converter,” International Symposium on Integrated Circuits, Singapore, September 2007.
[11]Chen, J.-J.; Su, J.-H.; Lin, H.-Y.; Chang, C.-C.; Lee, Y.; Chen, T.-C.; Wang, H.-C.; Chang, K.-S., and Lin, P.-S., "Integrated current sensing circuits suitable for step-down DC-DC converters," Electronics Letters , vol.40, no.3, pp. 200-202, 5 Feb. 2004
[12]S. Zhou and G. A. Rincon-Mora, "A High Efficiency, Soft Switching DC-DC Converter with Adaptive Current-Ripple Control for Portable Applications," Circuits and Systems II: Express Briefs, IEEE Transactions on, vol. 53, pp. 319-323, 2006.
[13]Sau-Mou Wu, Chung-Lin Wu, and Chia-Hsien Chang, “A New Self-Oscillating CMOS DC-DC Converter with Adaptive Mode-Switching Mechanism,” 18th VLSI Design/CAD Symposium, Taiwan, August 2007.
[14]Sau-Mou Wu and Chung-Lin Wu, “A Synchronous, Self-Oscillating, Fully Integrated CMOS DC-DC Converter with a New Adaptive Mode-Switching Mechanism,” IEEE Int’l SOC Design Conference, Korean, Oct. 2006.
[15]Sung-Mo Kang and Y. Leblebici, CMOS Digital Integrated Circuits: Analysis and design, Third Edition, McGRAM-HILL, 2003.
[16]Wan-Rone Liou; Mei-Ling Yeh, and Yueh Lung Kuo, "A High Efficiency Dual-Mode Buck Converter IC For Portable Applications," Power Electronics, IEEE Transactions on , vol.23, no.2, pp.667-677, March 2008.
[17]Tsz Yin Man; Mok, P.K.T., and Mansun Chan, "Design of Fast-Response On-Chip Current Sensor for Current-Mode Controlled Buck Converters with MHz Switching Frequency," Electron Devices and Solid-State Circuits, IEEE Conference on , vol., no., pp.389-392, 20-22 Dec. 2007.
[18]Chi Yat Leung; Mok, P.K.T.; Ka Nang Leung, and Chan, M., "An integrated CMOS current-sensing circuit for low-Voltage current-mode buck regulator," Circuits and Systems II: Express Briefs, IEEE Transactions on, vol.52, no.7, pp. 394-397, July 2005.
[19]D. A. Johns and K. Martin, Analog Integrated Circuit Design, 1st ed. New York: Wiley, 1997.
[20]Jiann-Jong Chen; Fong-Cheng Yang, and Chih-Chiang Chen, "A New Monolithic Fast-Response Buck Converter Using Spike-Reduction Current-Sensing Circuits," Industrial Electronics, IEEE Transactions on, vol.55, no.3, pp.1101-1111, March 2008.
[21]Fong-Cheng Yang; Chih-Chiang Chen; Jiann-Jong Chen; Yuh-Shyan Hwang, and Wen-Ta Lee, "Hysteresis-Current-Controlled Buck Converter Suitable for Li-Ion Battery Charger," Communications, Circuits and Systems Proceedings, 2006 International Conference on , vol.4, no., pp.2723-2726, 25-28 June 2006.
[22]Traff, H., "Novel approach to high speed CMOS current comparators," Electronics Letters, vol.28, o.3, pp.310-312, 30 Jan. 1992.
[23]B. Razavi, Design of Analog CMOS Integrated Circuits, McGRAW-HILL, 2001.
[24]Mok, P.K.T. and Ka Nang Leung, "Design considerations of recent advanced low-voltage low-temperature-coefficient CMOS bandgap voltage reference," Custom Integrated Circuits Conference, 2004. Proceedings of the IEEE 2004, vol., no., pp. 635-642, Oct. 2004.
[25]P. E. Allen and D. R. Holberg, CMOS analog circuit design, Second Edition, OXFORD, 2002.
[26]Katayama, Y.; Edo, M.; Denta, T.; Kawashima, T., and Ninomiya, T., "Optimum design method of CMOS IC for DC-DC converter that integrates power stage MOSFETs," Power Electronics Specialists Conference, vol.6, no., pp. 4486-4491, June 2004.
[27]Kursun, V.; Narendra, S.G.; De, V.K., and Friedman, E.G., "Efficiency analysis of a high frequency buck converter for on–chip integration with a dual–VDD microprocessor," Solid-State Circuits Conference, vol., no., pp. 743-746, 24-26 Sept. 2002
[28]Gildersleeve, M.; Forghani-zadeh, H.P., and Rincon-Mora, G.A., "A comprehensive power analysis and a highly efficient, mode-hopping DC-DC converter," ASIC, 2002. IEEE Asia-Pacific Conference on, pp. 153-156, 2002.
[29]Das, N. and Kazimierczuk, M.K., "Power losses and efficiency of buck PWM DC-DC power converter," Electrical Insulation Conference and Electrical Manufacturing Expo, vol., no., pp.417-423, 26-26 Oct. 2005.
[30]KEMET F3905 Data Sheet, February 2005.
[31]Coilcraft DS1608C Data Sheet, 2007.
[32]Chui, M.Y.-K.; Wing-Hung Ki, and Chi-Ying Tsui, "A programmable integrated digital controller for switching converters with dual-band switching and complex pole-zero compensation," Solid-State Circuits, IEEE Journal of , vol.40, no.3, pp. 772-780, March 2005.
[33]Feng-Fei Ma; Wei-Zen Chen, and Jiin-Chuan Wu, "A Monolithic Current-Mode Buck Converter with Advanced Control and Protection Circuits," Power Electronics, IEEE Transactions on, vol.22, no.5, pp.1836-1846, Sept. 2007.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top