跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/07/27 14:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林逸凡
研究生(外文):Yi-Fan Lin
論文名稱:具有低製程飄移之新式智慧型溫度感測器
論文名稱(外文):A New CMOS Smart Temperature Sensor with Low Sensitivity to Process Variation
指導教授:吳紹懋
指導教授(外文):Sau-Mou Wu
學位類別:碩士
校院名稱:元智大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:65
中文關鍵詞:智慧型溫度感測器
外文關鍵詞:Smart Temperature sensor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:240
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
此論文提出適用於積體電路中熱管理之新式智慧型溫度感測器。此次提出的溫度感測器在使用溫度補償之電流源以及一增益級使得二極體連接形式的電晶體和其零溫度效應作為感測裝置以達成高線性以及高輸出範圍。另外採用兩個感測電晶體之間的差值來降低製程瓢移對溫度感測器的影響。原感測電路以及一十位元遞迴式類比至數位轉換器皆設計為符合2.3伏特電壓源以及TSMC 0.35µm CMOS 2P4M標準製程。當溫度從0°C變化至100°C,輸出電壓則以4 mV/°C的變化率從1.19伏特變化至0.79伏特。而線性偏差則介於-0.072 %和0.134%之間。主要溫度感測器的功率消耗為39.24μW。
A new smart CMOS temperature sensor is proposed for thermal management of VLSI system in this thesis. The proposed temperature sensor consists of a diode-connected MOS transistor, a simple temperature independent current stage and amplifier stage. The proposed temperature sensor employs a diode-connected MOS transistor to be sensor device and uses a new simple temperature independent current stage and amplifier stage to achieve high linearity and high output swing, and then uses difference between two sensing transistors to reduce process variation. The prototype circuit with a 10-bit cyclic ADC is designed from a supply of 2.3V in the TSMC 0.35µm CMOS 2P4M standard process. The output voltage swings from 1.19V to 0.79V when the temperature rises from 0°C to 100°C. When the linearity deviation is between -0.072% and 0.134% with a gain of 4 mV/°C, the power consumption is about 39.24μW.
摘要 i
ABSTRACT ii
Acknowledgements iii
List of Contents iv
List of Figures vi
List of Tables ix
Chapter 1 1
Introduction 1
1.1 Motivation 1
1.2 Types of Temperature Sensor 3
1.3 The Specification of the Temperature Sensor 5
1.4 Several Types of I.C. Temperature Sensor 6
1.5 Thesis Organization 8
Chapter 2 10
The Design of the Proposed Temperature Sensor 10
2.1 Zero Temperature Coefficients 12
2.2 Effect for Process Variation 13
2.3 Current Source with Temperature Compensation 15
2.4 Topology of the Proposed Temperature Sensor 18
Chapter 3 31
Analog to Digital Converter 31
3.1 The Comparison of ADCs 31
3.2 The Principle of Cyclic ADC 32
3.3 Circuit Design of Cyclic ADC 33
3.4 CMOS Operational Amplifier 36
3.4 Simulation of ADC 40
Chapter 4 47
Measurement 47
4.1 The Test Plan of a Temperature Sensor 47
4.2 The Measurement Results of the Temperature Sensor 52
4.3 The Measurement Results of Cyclic ADC 56
Chapter 5 62
Conclusion and Future Work 62
5.1 Conclusion 62
5.2 Future Work 63
Reference 65
[1]B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill, New York, 2001.
[2]Phillip E. Allen and Douglas R. Holberg, CMOS Analog Circuit Design, OXFORD, New York, 2001.
[3]Anton Bakker, ”CMOS Smart Temperature Sensor – An Overview,” Proc IEEE Sensor, vol. 2, pp. 1423-1427, Jun. 2002.
[4]M. Pertijs, A. Niederkorn, M. Xu, B. McKillop, A. Bakker, and J. H. Huijsing, “A CMOS Smart Temperature Sensor With a 3σ Inaccuracy of 0.5 C From 50 C to 120 C,” in IEEE ISSCC Dig. Tech. Papers, vol. 1, pp. 200–201, Feb. 2003.
[5]Poki Chen, Chun-chi Chen, Chin-Chung Tsai, and Wen-Fu Lu, “A Time-to-Digital-Converter-Based CMOS Temperature Sensor,” IEEE J. Solid-State Circuit, vol. 40, NO. 8, pp. 1642-1648, Aug. 2005.
[6]M. Tuthill, “A switched-current, switched-capacitor temperature sensor in 0.6-um CMOS,” IEEE J. Solid-State Circuits, vol. 33, no. 7, pp. 1117–1122, Jul. 1998.
[7]I. M. Filanovsky, Su Tam Lim, “Temperature Sensor Applications of Diode-Connected MOS Transistors,” Circuits and Systems, 2002. ISCAS 2002. IEEE International Symposium on, Vol. 2, pp. 149-152, May 2002.
[8]I. M. Filanovsky and A. Allam, “Mutual compensation of mobility and threshold voltage temperature effects with applications in CMOS circuits,” IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., vol. 48, no. 7, pp. 876–884, Jul. 2001.
[9]Franco Fiori, and Paolo Stefano Crovetti, “A New Compact Temperature-Compensated CMOS Current Reference,” IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, Vol. 52, NO. 11, Nov 2005.
[10]TSMC2P4M process technology file.
[11]吳紹懋, 95S187 CMOS A/D 及 D/A 設計與測試應用技術, 上課講義, Sept. 2006.
[12]V. Szkkely, M. Rencz and B. Courtois, “Integrating On-chip Temperature Sensors into DfT Schemes and BIST Architectures,” VLSI Test Symposium, 1997, 15th IEEE pp. 440-445, May. 1997.
[13]A. Bakker and J. H. Huijsing, “Micropower CMOS temperature sensor with digital output,” IEEE J. Solid-State Circuits, vol. 31, no. 7, pp. 933–937, Jul. 1996.
[14]Fatih Kocer and Michael P. Flyynn, “An RF-Powered, Wireless CMOS Temperature Sensor,” IEEE Sensor Journal, vol.6 No.3, pp. 557-564, June. 2006.
[15]Yiming Zhai, Somashekar B. Prakash, Marc H. Cohen, Pamela A. Abshire, “Detection of On-Chip Temperature Gradient Using a 1.5V Low Power CMOS Temperature Sensor,” IEEE ISCAS 2006, pp. 1171-1174, 2006.
[16]Anton Bakker and Johen K. Kuijsing, “A Low-Cost High-Accuracy CMOS Smart Temperature Sensor,” Solid-State Circuits Coference, 1999. ESSCIRC ’99. Proceeding of 25th European, pp. 302-305, Sep. 1999.
[17]R. J. Baker, CMOS MIXED-SIGNAL CIRCUIT DESIGN, Wiley Interscience, Inc. 2002.
[18]Wei-Cheng Lee, Hung-Chih Lin, and Tsin-Yuan Chang, “A Novel CMOS Smart Temperature Sensor for On-Line Thermal Monitoring,” VLSI Design/CAD Symposium, Aug. 2007.
[19]Cornel. Stanescu, “A new architecture for low voltage temperature sensors,” Semiconductor Conference, vol.1, pp.171-174, 1998.
[20]K. Opasjumruskit et al., “Self-Powered Wireless Temperature Sensors Exploit RFID Technology,” IEEE Pervasive Computing, vol.5,no.1, pp. 54-61, March. 2006.
[21]Ken Ueno, Tetsuya Hirose, and Tetsuya Asai, ”Ultralow-Power Smart Temperature Sensor with Subthreshold CMOS Circuits,” International Symposium on Intelligent Signal Process and Communication Systems, pp. 546-549, 2006.
[22]K. Arabi, B. Kaminska, “Built-in temperature sensors for on-line thermal monitoring of microelectronic structures,” VLSI in Computers and Processors, IEEE International Conference on, pp. 462-467, Oct. 1997.
[23]M. A. P. Pertijs, A. Bakker and J. H. Huijsing “A high-accury temperature sensor with second-order curvature correction and digital bus interface,” ISCAS 2001. Vol. 1, pp.368 -371, May. 2001.
[24]G.C.M. Meijer, G. Wang, F. Fruett, “Temperature sensors and voltage references implemented in CMOS technology,” IEEE Sensors Journal, vol. 1, pp.225-234, 2001.
[25]K. Arabi, and B. Kaminska, “Built-in temperature sensors for on-line thermal monitoring of microelectronic structures” IEEE Computer Design: VLSI in Computers and Processors, ICCD, pp. 462 – 467, Oct. 1997.
[26]V. Szekely, C. Marta, Z. Kohari and M. Rencz, “CMOS sensors for on-line thermal monitoring of VLSI circuits,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 5, no. 3, pp. 270 – 276, Sept. 1997.
[27]Anton Bakker, “CMOS smart temperature sensors - an overview,” IEEE Sensors, vol. 2, pp 1423- 1427, June 2002.
[28]G.B. Zhang, S. Saw, J. Liu, S. Sterrantino, D.K. Johnson, and S. Jung, “An Accurate Current Source with On-chip Self-calibration Circuits for Low-voltage Current Mode Differential Drivers,” IEEE Transactions on Circuits and Systems I, vol. 53, no. 1, pp. 40-47, Jan. 2006.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top